scholarly journals Phytohormone profiles in non-transformed and AtCKX transgenic centaury (Centaurium erythraea Rafn) shoots and roots in response to salinity stress in vitro

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Milana Trifunović-Momčilov ◽  
Václav Motyka ◽  
Petre I. Dobrev ◽  
Marija Marković ◽  
Snežana Milošević ◽  
...  

AbstractPlant hormones regulate numerous developmental and physiological processes. Abiotic stresses considerably affect production and distribution of phytohormones as the stress signal triggers. The homeostasis of plant hormones is controlled by their de novo synthesis and catabolism. The aim of this work was to analyse the contents of total and individual groups of endogenous cytokinins (CKs) as well as indole-3-acetic acid (IAA) in AtCKX overexpressing centaury plants grown in vitro on graded NaCl concentrations (0, 50, 100, 150, 200 mM). The levels of endogenous stress hormones including abscisic acid (ABA), salicylic acid (SA) and jasmonic acid (JA) were also detected. The elevated contents of total CKs were found in all analysed centaury shoots. Furthermore, increased amounts of all five CK groups, as well as enhanced total CKs were revealed on graded NaCl concentrations in non-transformed and AtCKX roots. All analysed AtCKX centaury lines exhibited decreased amounts of endogenous IAA in shoots and roots. Consequently, the IAA/bioactive CK forms ratios showed a significant variation in the shoots and roots of all AtCKX lines. In shoots and roots of both non-transformed and AtCKX transgenic centaury plants, salinity was associated with an increase of ABA and JA and a decrease of SA content.

2021 ◽  
Vol 22 (5) ◽  
pp. 2651
Author(s):  
Linda Jahn ◽  
Uta Hofmann ◽  
Jutta Ludwig-Müller

The plant hormone indole-3-acetic acid (IAA) is one of the main signals playing a role in the communication between host and endophytes. Endophytes can synthesize IAA de novo to influence the IAA homeostasis in plants. Although much is known about IAA biosynthesis in microorganisms, there is still less known about the pathway by which IAA is synthesized in fungal endophytes. The aim of this study is to examine a possible IAA biosynthesis pathway in Cyanodermella asteris. In vitro cultures of C. asteris were incubated with the IAA precursors tryptophan (Trp) and indole, as well as possible intermediates, and they were additionally treated with IAA biosynthesis inhibitors (2-mercaptobenzimidazole and yucasin DF) to elucidate possible IAA biosynthesis pathways. It was shown that (a) C. asteris synthesized IAA without adding precursors; (b) indole-3-acetonitrile (IAN), indole-3-acetamide (IAM), and indole-3-acetaldehyde (IAD) increased IAA biosynthesis; and (c) C. asteris synthesized IAA also by a Trp-independent pathway. Together with the genome information of C. asteris, the possible IAA biosynthesis pathways found can improve the understanding of IAA biosynthesis in fungal endophytes. The uptake of fungal IAA into Arabidopsis thaliana is necessary for the induction of lateral roots and other fungus-related growth phenotypes, since the application of the influx inhibitor 2-naphthoxyacetic acid (NOA) but not the efflux inhibitor N-1-naphtylphthalamic acid (NPA) were altering these parameters. In addition, the root phenotype of the mutation in an influx carrier, aux1, was partially rescued by C. asteris.


HortScience ◽  
1990 ◽  
Vol 25 (1) ◽  
pp. 114-116 ◽  
Author(s):  
E.E. Chesick ◽  
D.E. Bilderback ◽  
G.M. Blake

Vegetative long-shoot buds, greenwood stems, and immature needles of 20-year-old western larch (Larix occidentalis Nutt.) were cultured to induce multiple bud formation. Explants were collected year-round and cultured on a modified Schenk and Hildebrandt (SH) medium containing 6-benzyladenine (BA) at 0, 1, 5, 10, 50, or 100 μm. Multiple buds were produced on buds and stems with terminal meristems, but not on needles or stem sections. The induction of de novo buds and development of axillary buds required BA at 1 to 10 μm; higher concentrations of BA were less effective. More explants formed multiple buds on SH than on modified Murashige and Skoog (MS) media. Multiple buds formed on more buds and stems excised during the growing season than from dormant buds. Buds cultured on media containing gibberellin died within 6 weeks; auxin caused bud elongation but no multiple buds formed. Chemical names used: N-[(trichloromethyl)thio]-4-cyclohexene-1,2-dicarboximide (captan); 6-benzyladenine (BA); 1H-indole-3-butyric acid (IBA); 1H-indole-3-acetic acid (IAA); gibberellin (GA4+7).


1969 ◽  
Vol 08 (02) ◽  
pp. 196-206 ◽  
Author(s):  
Dieter. Kummer
Keyword(s):  

ZusammenfassungIn nahezu glucosefreier Suspension von Ehrlich-Ascitescarcinomzellen bewirkt die Zufuhr von Glucose 2,5 × 10–4 bis 10–2 M:1. Hemmung der [14C] Thymidin-Einbaurate in die Zellen.2. Aktivierung des Ribonucleotid-Reductase-Systems und damit Stimulierung der Desoxyribonucleotidsynthese (auch der Thymidintriphosphat-de-novo-Synthese).3. Blockierung der Thymidinkinase über Endprodukthemmung, wodurch die Minderung des [14C] Thymidin-Einbaus in die Zellen erklärbar ist.


Author(s):  
Альбина Шамсуновна Ахметова ◽  
Альфия Ануровна Зарипова
Keyword(s):  

Показана возможность эффективного применения метода культуры тканей для размножения Allium neriniflorum (Herb.) Backer. Исследуемый вид является декоративным растением, размножение которого затруднено из-за низкой всхожести семян и ослабленной способности к формированию дочерних луковиц. Разработана технология клонального микроразмножения из стерильных луковиц. В качестве исходного материала использовали семена A. neriniflorum. Подобраны условия стерилизации, позволяющие достичь максимального числа (75 %) жизнеспособных эксплантов. Поверхностную стерилизацию проводили в ламинар-боксе с использованием в качестве стерилизующего агента 0,1 % раствор диацида. Семена сначала обрабатывали 70 % этанолом, затем стерилизующим раствором. Экспозиция стерилизующих растворов составляла от 5 до 9 мин. Показано, что способность к индуцированному морфогенезу существенно зависит от состава питательной среды. Максимальное число луковиц образовывалось на среде QL — 9 шт./эксплант. Исследуемые виды обладали высокой способностью к мультипликации и формированию полноценных растений при подобранных условиях культивирования in vitro. Выявленная морфогенетическая активность зачаточного побега, сегментов чешуй и донца стерильной луковицы A. neriniflorum, проявляющаяся в способности регенерировать побеги de novo, что возможно только в культуре in vitro, обеспечивает формирование полноценных луковиц. Луковицы, полученные in vitro, включали в последующие циклы микроразмножения. Культура тканей и органов in vitro позволяет размножать A. neriniflorum с более высоким коэффициентом размножения. От одной стерильной луковицы можно получить до 7000 луковиц в год. При традиционном вегетативном способе размножения материнская луковица формирует 1, редко 2 дочерние луковицы.


2017 ◽  
Vol 68 (6) ◽  
pp. 1188-1192
Author(s):  
Daniela Avram ◽  
Nicolae Angelescu ◽  
Dan Nicolae Ungureanu ◽  
Ionica Ionita ◽  
Iulian Bancuta ◽  
...  

The study in vitro of the glass powders bioactivity was performed by soaking them in simulated body fluid for 3 to 21 days at a temperature of 37�C and pH = 7.20. The synthesis de novo of hydroxyapatite, post soaking was confirmed by Fourier Transform Infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The study of the antimicrobial activity was performed by microbiological examination on two strains of pathogenic bacteria involved in postoperative nosocomial infections.


Chemistry ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 238-255
Author(s):  
Esther M. Sánchez-Carnerero ◽  
Marina Russo ◽  
Andreas Jakob ◽  
Lucie Muchová ◽  
Libor Vítek ◽  
...  

Carbon monoxide (CO) is an endogenously produced signaling molecule involved in the control of a vast array of physiological processes. One of the strategies to administer therapeutic amounts of CO is the precise spatial and temporal control over its release from photoactivatable CO-releasing molecules (photoCORMs). Here we present the synthesis and photophysical and photochemical properties of a small library of meso-carboxy BODIPY derivatives bearing different substituents at positions 2 and 6. We show that the nature of substituents has a major impact on both their photophysics and the efficiency of CO photorelease. CO was found to be efficiently released from π-extended 2,6-arylethynyl BODIPY derivatives possessing absorption spectra shifted to a more biologically desirable wavelength range. Selected photoCORMs were subjected to in vitro experiments that did not reveal any serious toxic effects, suggesting their potential for further biological research.


2021 ◽  
pp. eabd6990
Author(s):  
Sang Il Kim ◽  
Jinsung Noh ◽  
Sujeong Kim ◽  
Younggeun Choi ◽  
Duck Kyun Yoo ◽  
...  

Stereotypic antibody clonotypes exist in healthy individuals and may provide protective immunity against viral infections by neutralization. We observed that 13 out of 17 patients with COVID-19 had stereotypic variable heavy chain (VH) antibody clonotypes directed against the receptor-binding domain (RBD) of SARS-CoV-2 spike protein. These antibody clonotypes were comprised of immunoglobulin heavy variable (IGHV)3-53 or IGHV3-66 and immunoglobulin heavy joining (IGHJ)6 genes. These clonotypes included IgM, IgG3, IgG1, IgA1, IgG2, and IgA2 subtypes and had minimal somatic mutations, which suggested swift class switching after SARS-CoV-2 infection. The different immunoglobulin heavy variable chains were paired with diverse light chains resulting in binding to the RBD of SARS-CoV-2 spike protein. Human antibodies specific for the RBD can neutralize SARS-CoV-2 by inhibiting entry into host cells. We observed that one of these stereotypic neutralizing antibodies could inhibit viral replication in vitro using a clinical isolate of SARS-CoV-2. We also found that these VH clonotypes existed in six out of 10 healthy individuals, with IgM isotypes predominating. These findings suggest that stereotypic clonotypes can develop de novo from naïve B cells and not from memory B cells established from prior exposure to similar viruses. The expeditious and stereotypic expansion of these clonotypes may have occurred in patients infected with SARS-CoV-2 because they were already present.


2021 ◽  
Vol 99 (Supplement_2) ◽  
pp. 25-26
Author(s):  
Sterling H Fahey ◽  
Sarah West ◽  
John M Long ◽  
Carey Satterfield ◽  
Rodolfo C Cardoso

Abstract Gestational nutrient restriction causes epigenetic and phenotypic changes that affect multiple physiological processes in the offspring. Gonadotropes, the cells in the anterior pituitary that secrete luteinizing hormone (LH) and follicle-stimulating hormone (FSH), are particularly sensitive to nutritional changes during fetal development. Our objective herein was to investigate the effects of gestational nutrient restriction on LH protein content and number of gonadotropes in the fetal bovine pituitary. We hypothesized that moderate nutrient restriction during mid to late gestation decreases pituitary LH production, which is associated with a reduced number of gonadotropes. Embryos were produced in vitro with X-bearing semen from a single sire then split to generate monozygotic twins. Each identical twin was transferred to a virgin dam yielding four sets of female twins. At gestational d 158, the dams were randomly assigned into two groups, one fed 100% NRC requirements (control) and the other fed 70% of NRC requirements (restricted) during the last trimester of gestation, ensuring each pair of twins had one twin in each group. At gestational d 265, the fetuses (n = 4/group) were euthanized by barbiturate overdose, and the pituitaries were collected. Western blots were performed using an ovine LH-specific antibody (Dr. A.F. Parlow, NIDDK). The total LH protein content in the pituitary tended to be decreased in the restricted fetuses compared to controls (P < 0.10). However, immunohistochemistry analysis of the pituitary did not reveal any significant changes in the total number of LH-positive cells (control = 460±23 cells/0.5 mm2; restricted = 496±45 cells/0.5 mm2, P = 0.58). In conclusion, while maternal nutrient restriction during gestation resulted in a trend of reduced LH content in the fetal pituitary, immunohistological findings suggest that these changes are likely related to the individual potential of each gonadotrope to produce LH, rather than alterations in cell differentiation during fetal development.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anna Kaziales ◽  
Florian Rührnößl ◽  
Klaus Richter

AbstractThe glucocorticoid receptor is a key regulator of essential physiological processes, which under the control of the Hsp90 chaperone machinery, binds to steroid hormones and steroid-like molecules and in a rather complicated and elusive response, regulates a set of glucocorticoid responsive genes. We here examine a human glucocorticoid receptor variant, harboring a point mutation in the last C-terminal residues, L773P, that was associated to Primary Generalized Glucocorticoid Resistance, a condition originating from decreased affinity to hormone, impairing one or multiple aspects of GR action. Using in vitro and in silico methods, we assign the conformational consequences of this mutation to particular GR elements and report on the altered receptor properties regarding its binding to dexamethasone, a NCOA-2 coactivator-derived peptide, DNA, and importantly, its interaction with the chaperone machinery of Hsp90.


Sign in / Sign up

Export Citation Format

Share Document