scholarly journals Remote drain inspection framework using the convolutional neural network and re-configurable robot Raptor

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lee Ming Jun Melvin ◽  
Rajesh Elara Mohan ◽  
Archana Semwal ◽  
Povendhan Palanisamy ◽  
Karthikeyan Elangovan ◽  
...  

AbstractDrain blockage is a crucial problem in the urban environment. It heavily affects the ecosystem and human health. Hence, routine drain inspection is essential for urban environment. Manual drain inspection is a tedious task and prone to accidents and water-borne diseases. This work presents a drain inspection framework using convolutional neural network (CNN) based object detection algorithm and in house developed reconfigurable teleoperated robot called ‘Raptor’. The CNN based object detection model was trained using a transfer learning scheme with our custom drain-blocking objects data-set. The efficiency of the trained CNN algorithm and drain inspection robot Raptor was evaluated through various real-time drain inspection field trial. The experimental results indicate that our trained object detection algorithm has detect and classified the drain blocking objects with 91.42% accuracy for both offline and online test images and is able to process 18 frames per second (FPS). Further, the maneuverability of the robot was evaluated from various open and closed drain environment. The field trial results ensure that the robot maneuverability was stable, and its mapping and localization is also accurate in a complex drain environment.

Author(s):  
Fei Rong ◽  
Li Shasha ◽  
Xu Qingzheng ◽  
Liu Kun

The Station logo is a way for a TV station to claim copyright, which can realize the analysis and understanding of the video by the identification of the station logo, so as to ensure that the broadcasted TV signal will not be illegally interfered. In this paper, we design a station logo detection method based on Convolutional Neural Network by the characteristics of the station, such as small scale-to-height ratio change and relatively fixed position. Firstly, in order to realize the preprocessing and feature extraction of the station data, the video samples are collected, filtered, framed, labeled and processed. Then, the training sample data and the test sample data are divided proportionally to train the station detection model. Finally, the sample is tested to evaluate the effect of the training model in practice. The simulation experiments prove its validity.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 171461-171470
Author(s):  
Dianwei Wang ◽  
Yanhui He ◽  
Ying Liu ◽  
Daxiang Li ◽  
Shiqian Wu ◽  
...  

2020 ◽  
Vol 28 (S2) ◽  
Author(s):  
Asmida Ismail ◽  
Siti Anom Ahmad ◽  
Azura Che Soh ◽  
Mohd Khair Hassan ◽  
Hazreen Haizi Harith

The object detection system is a computer technology related to image processing and computer vision that detects instances of semantic objects of a certain class in digital images and videos. The system consists of two main processes, which are classification and detection. Once an object instance has been classified and detected, it is possible to obtain further information, including recognizes the specific instance, track the object over an image sequence and extract further information about the object and the scene. This paper presented an analysis performance of deep learning object detector by combining a deep learning Convolutional Neural Network (CNN) for object classification and applies classic object detection algorithms to devise our own deep learning object detector. MiniVGGNet is an architecture network used to train an object classification, and the data used for this purpose was collected from specific indoor environment building. For object detection, sliding windows and image pyramids were used to localize and detect objects at different locations, and non-maxima suppression (NMS) was used to obtain the final bounding box to localize the object location. Based on the experiment result, the percentage of classification accuracy of the network is 80% to 90% and the time for the system to detect the object is less than 15sec/frame. Experimental results show that there are reasonable and efficient to combine classic object detection method with a deep learning classification approach. The performance of this method can work in some specific use cases and effectively solving the problem of the inaccurate classification and detection of typical features.


2019 ◽  
Vol 11 (13) ◽  
pp. 1516 ◽  
Author(s):  
Chang Lai ◽  
Jiyao Xu ◽  
Jia Yue ◽  
Wei Yuan ◽  
Xiao Liu ◽  
...  

With the development of ground-based all-sky airglow imager (ASAI) technology, a large amount of airglow image data needs to be processed for studying atmospheric gravity waves. We developed a program to automatically extract gravity wave patterns in the ASAI images. The auto-extraction program includes a classification model based on convolutional neural network (CNN) and an object detection model based on faster region-based convolutional neural network (Faster R-CNN). The classification model selects the images of clear nights from all ASAI raw images. The object detection model locates the region of wave patterns. Then, the wave parameters (horizontal wavelength, period, direction, etc.) can be calculated within the region of the wave patterns. Besides auto-extraction, we applied a wavelength check to remove the interference of wavelike mist near the imager. To validate the auto-extraction program, a case study was conducted on the images captured in 2014 at Linqu (36.2°N, 118.7°E), China. Compared to the result of the manual check, the auto-extraction recognized less (28.9% of manual result) wave-containing images due to the strict threshold, but the result shows the same seasonal variation as the references. The auto-extraction program applies a uniform criterion to avoid the accidental error in manual distinction of gravity waves and offers a reliable method to process large ASAI images for efficiently studying the climatology of atmospheric gravity waves.


2021 ◽  
pp. 1-12
Author(s):  
Qian Wang ◽  
Wenfang Zhao ◽  
Jiadong Ren

Intrusion Detection System (IDS) can reduce the losses caused by intrusion behaviors and protect users’ information security. The effectiveness of IDS depends on the performance of the algorithm used in identifying intrusions. And traditional machine learning algorithms are limited to deal with the intrusion data with the characteristics of high-dimensionality, nonlinearity and imbalance. Therefore, this paper proposes an Intrusion Detection algorithm based on Image Enhanced Convolutional Neural Network (ID-IE-CNN). Firstly, based on the image processing technology of deep learning, oversampling method is used to increase the amount of original data to achieve data balance. Secondly, the one-dimensional data is converted into two-dimensional image data, the convolutional layer and the pooling layer are used to extract the main features of the image to reduce the data dimensionality. Third, the Tanh function is introduced as an activation function to fit nonlinear data, a fully connected layer is used to integrate local information, and the generalization ability of the prediction model is improved by the Dropout method. Finally, the Softmax classifier is used to predict the behavior of intrusion detection. This paper uses the KDDCup99 data set and compares with other competitive algorithms. Both in the performance of binary classification and multi-classification, ID-IE-CNN is better than the compared algorithms, which verifies its superiority.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Cong Lin ◽  
Yongbin Zheng ◽  
Xiuchun Xiao ◽  
Jialun Lin

The workload of radiologists has dramatically increased in the context of the COVID-19 pandemic, causing misdiagnosis and missed diagnosis of diseases. The use of artificial intelligence technology can assist doctors in locating and identifying lesions in medical images. In order to improve the accuracy of disease diagnosis in medical imaging, we propose a lung disease detection neural network that is superior to the current mainstream object detection model in this paper. By combining the advantages of RepVGG block and Resblock in information fusion and information extraction, we design a backbone RRNet with few parameters and strong feature extraction capabilities. After that, we propose a structure called Information Reuse, which can solve the problem of low utilization of the original network output features by connecting the normalized features back to the network. Combining the network of RRNet and the improved RefineDet, we propose the overall network which was called CXR-RefineDet. Through a large number of experiments on the largest public lung chest radiograph detection dataset VinDr-CXR, it is found that the detection accuracy and inference speed of CXR-RefineDet have reached 0.1686 mAP and 6.8 fps, respectively, which is better than the two-stage object detection algorithm using a strong backbone like ResNet-50 and ResNet-101. In addition, the fast reasoning speed of CXR-RefineDet also provides the possibility for the actual implementation of the computer-aided diagnosis system.


2021 ◽  
Vol 1 (100) ◽  
pp. 68-77
Author(s):  
YAROSLAV M. TROFIMENKO ◽  
EVGENIY V. ERSHOV

A model for detecting objects in the image and a model for identifying steel-teeming ladles are discussed in the article. The object detection model is based on the use of a convolutional neural network. The identification model is based on the comparison of steel-teeming ladle features specific to the production process. The authors describe the adaptations of models to the conditions of the YOLOv3 architecture and the parameters of steel-teeming ladles in steel production. Simulation results are given at the end of the article.


Sign in / Sign up

Export Citation Format

Share Document