scholarly journals Refining the mandibular osteoradionecrosis rat model by in vivo longitudinal µCT analysis

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Morgane Dos Santos ◽  
Christelle Demarquay ◽  
Louis Ermeneux ◽  
Fazia Aberkane ◽  
Pauline Bléry ◽  
...  

AbstractOsteoradionecrosis (ORN) is one of the most feared side effects of radiotherapy following cancers of the upper aero-digestive tract and leading to severe functional defects in patients. Today, our lack of knowledge about the physiopathology restricts the development of new treatments. In this study, we refined the ORN rat model and quantitatively studied the progression of the disease. We tested the impact of radiation doses from 20 to 40 Gy, delivered with incident 4MV X-ray beams on the left mandible of the inbred Lewis Rat. We used micro-computed tomography (µCT) to obtain in vivo images for longitudinal bone imaging and ex vivo images after animal perfusion with barium sulphate contrast agent for vessel imaging. We compared quantification methods by analyzing 3D images and 2D measurements to determine the most appropriate and precise method according to the degree of damage. We defined 25 Gy as the minimum irradiation dose combined with the median molar extraction necessary to develop non-regenerative bone necrosis. µCT image analyses were correlated with clinical and histological analyses. This refined model and accurate methods for bone and vessel quantification will improve our knowledge of the progression of ORN pathology and allow us to test the efficacy of new regenerative medicine procedures.

2021 ◽  
Vol 22 (2) ◽  
pp. 674
Author(s):  
Óscar Darío García-García ◽  
Marwa El Soury ◽  
David González-Quevedo ◽  
David Sánchez-Porras ◽  
Jesús Chato-Astrain ◽  
...  

Acellular nerve allografts (ANGs) represent a promising alternative in nerve repair. Our aim is to improve the structural and biomechanical properties of biocompatible Sondell (SD) and Roosens (RS) based ANGs using genipin (GP) as a crosslinker agent ex vivo. The impact of two concentrations of GP (0.10% and 0.25%) on Wistar rat sciatic nerve-derived ANGs was assessed at the histological, biomechanical, and biocompatibility levels. Histology confirmed the differences between SD and RS procedures, but not remarkable changes were induced by GP, which helped to preserve the nerve histological pattern. Tensile test revealed that GP enhanced the biomechanical properties of SD and RS ANGs, being the crosslinked RS ANGs more comparable to the native nerves used as control. The evaluation of the ANGs biocompatibility conducted with adipose-derived mesenchymal stem cells cultured within the ANGs confirmed a high degree of biocompatibility in all ANGs, especially in RS and RS-GP 0.10% ANGs. Finally, this study demonstrates that the use of GP could be an efficient alternative to improve the biomechanical properties of ANGs with a slight impact on the biocompatibility and histological pattern. For these reasons, we hypothesize that our novel crosslinked ANGs could be a suitable alternative for future in vivo preclinical studies.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1335.2-1335
Author(s):  
T. Seo ◽  
V. Deshmukh ◽  
Y. Yazici

Background:Meniscal injuries, associated with pain, stiffness, and localized swelling, are the most common pathology of the knee with a prevalence of 61 per 100,000.1Meniscal damage is a frequent finding on MRI images of knee osteoarthritis (OA)2; while a meniscal tear can lead to knee OA, knee OA can also lead to a spontaneous meniscal tear.3Efforts to repair meniscal damage have been largely unsuccessful and do not prevent the progression of degenerative changes that lead to knee OA.4The Wnt signaling pathway has been shown to be regulated during meniscal development,5,6suggesting that manipulation of this pathway may influence the regenerative capacity of the meniscus. Lorecivivint (LOR; SM04690) is an intra-articular (IA), small-molecule CLK/DYRK1A inhibitor that modulates the Wnt pathway.Objectives:LOR was evaluated in preclinical studies to determine its protective and anabolic effects in ex vivo explants and in a rat model of chemically induced inflammatory meniscus degeneration.Methods:Effects of LOR (30 nM) on expression of matrix metalloproteinases (MMPs) in cultured rat menisci treated with IL-1B were measured by qPCR. In vivo, LOR activity was evaluated in a rat model of monosodium iodoacetate (MIA) injection-induced inflammatory meniscus degeneration. A single IA injection of MIA was immediately followed by a single IA injection of LOR (0.3 ug) or vehicle. Knees were harvested on Days 1, 4, and 11 and menisci were isolated. Anti-inflammatory effects were evaluated by measuringTNFAandIL6expression by qPCR. Meniscus protection was evaluated by qPCR for MMPs and aggrecanase and anabolic effects by qPCR for collagens.Results:In ex vivo meniscal explants, LOR inhibited expression ofMMP1,MMP3, andMMP13compared to DMSO (P<0.01). In vivo, LOR significantly decreased expression of these MMPs and aggrecanase (P<0.05) compared to vehicle in the rat model of inflammatory meniscus degeneration at Day 4 after MIA injection. In addition, LOR reduced expression of inflammatory cytokinesTNFAandIL6at Day 4 compared to vehicle. Finally, LOR increased expression of collagen types I, II, and III at Day 11 after MIA injection.Conclusion:LOR exhibited protective effects in the meniscus ex vivo and in vivo by reducing the expression of catabolic enzymes compared to control. Anti-inflammatory effects of LOR were demonstrated by inhibition of inflammatory cytokine expression. Compared to vehicle, LOR increased expression of collagens in vivo, indicating potential meniscal anabolic effects. These data support further investigation of LOR as a potential disease-modifying therapy for meniscal injuries.References:[1]Logerstedt D and Snyder-Mackler L.J Orthop Sports Phys Ther. 2010[2]Englund M, et al.Rheum Dis Clin North Am. 2009[3]Englund M, et al.Radiol Clin North Am. 2009[4]von Lewinski, et al.Knee Surg Sports Traumatol Arthrosc. 2007[5]Pazin DE, et al.ORS 2012 Annual Meeting. Paper No. 0221[6]Pazin DE, et al.Dev Dyn. 2012Disclosure of Interests:Tim Seo Shareholder of: Samumed, LLC, Employee of: Samumed, LLC, Vishal Deshmukh Shareholder of: Samumed, LLC, Employee of: Samumed, LLC, Yusuf Yazici Shareholder of: Samumed, LLC, Grant/research support from: Bristol-Myers Squibb, Celgene, and Genentech, Consultant of: Celgene and Sanofi, Employee of: Samumed, LLC


Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 354
Author(s):  
Subir Roy Chowdhury ◽  
Cheryl Peltier ◽  
Sen Hou ◽  
Amandeep Singh ◽  
James B. Johnston ◽  
...  

Mitochondrial respiration is becoming more commonly used as a preclinical tool and potential biomarker for chronic lymphocytic leukemia (CLL) and activated B-cell receptor (BCR) signaling. However, respiration parameters have not been evaluated with respect to dose of ibrutinib given in clinical practice or the effect of progression on ibrutinib treatment on respiration of CLL cells. We evaluated the impact of low and standard dose ibrutinib on CLL cells from patients treated in vivo on mitochondrial respiration using Oroboros oxygraph. Cytokines CCL3 and CCL4 were evaluated using the Mesoscale. Western blot analysis was used to evaluate the BCR and apoptotic pathways. We observed no difference in the mitochondrial respiration rates or levels of plasma chemokine (C-C motif) ligands 3 and 4 (CCL3/CCL4), β-2 microglobulin (β-2 M) and lactate dehydrogenase (LDH) between low and standard doses of ibrutinib. This may confirm why clinical observations of the safety and efficacy of low dose ibrutinib are observed in practice. Of interest, we also observed that the mitochondrial respiration of CLL cells paralleled the increase in β-2 M and LDH at progression. Our study further supports mitochondrial respiration as a biomarker for response and progression on ibrutinib in CLL cells and a valuable pre-clinical tool.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1959-1959
Author(s):  
Jeong A Park ◽  
Hong fen Guo ◽  
Hong Xu ◽  
Nai-Kong V. Cheung

Background Ex Vivo Armed T-cells (EVAT) carrying zeptomoles (10-21M) of T-cell engaging GD2-bispecific antibody (GD2-EVAT) or HER2-bispecific antibodies (HER2-EVAT) have potent anti-tumor activity against GD2(+) and/or HER2(+) solid tumors. Strategies to further optimize this approach are highly relevant. PD-1 is a key immune checkpoint receptor expressed mainly by activated T-cells and mediates immune suppression by binding to its ligands PD-L1 or PD-L2. Upregulation of PD-L1 has been found in many cancers including osteosarcoma and associated with aggressive disease and poor outcome. While the use of immune checkpoint inhibitors (ICIs) seems logical, the ideal timing when combined with T-cell engaging bispecific antibody (T-BsAb) or EVAT has yet to be defined. Here, we described the effects of anti-PD-1 or anti-PD-L1 antibodies on GD2-EVAT or HER2-EVAT therapy and explored the impact of its timing in the treatment of osteosarcoma which is GD2(+), HER2(+) and PD-L1(+). Methods GD2-BsAb and HER-BsAb were built using the IgG(L)-scFv format (Can Immunol Res, 3:266, 2015, Oncoimmunology, PMID:28405494). T-cells from healthy volunteer donors were isolated, and cultured ex vivo in the presence of CD3/CD28 beads plus 30 IU/mL of interleukin 2 (IL-2). Between day 7 and day 14, activated T-cells (ATCs) were harvested and armed for 20 minutes at room temperature with GD2-BsAb or HER2-BsAb. In vivo anti-tumor activity against GD2(+), HER2(+), and PD-L1(+) osteosarcoma cell line xenografts was tested in BALB-Rag2-/-IL-2R-γc-KO mice. Anti-human PD-1 antibody (pembrolizumab, anti-PD-1) or anti-human PD-L1 antibody (atezolizumab, anti-PD-L1) were tested for synergy with GD2-EVAT or HER2-EVAT therapy. Results The PD-1 expression increased among T-cells that circulated in the blood, that infiltrated the spleen or the tumor after EVAT therapy. While anti-PD-L1 combination therapy with GD2-EVAT or HER2-EVAT improved anti-tumor response against osteosarcoma (P=0.0123 and P=0.0004), anti-PD-1 did not (all P>0.05). The addition of anti-PD-L1 significantly increased T-cell survival in blood and T-cell infiltration of tumor when compared to GD2-EVAT or HER2-EVAT alone (all P<0.0001). Treatment of GD2-EVAT or anti-PD-L1 plus GD2-EVAT downregulated GD2 expression on tumors, but anti-PD-1 plus GD2-EVAT did not. For the next step we tested the impact of different combination schedules of ICIs on GD2-EVAT therapy. Concurrent anti-PD-1 (6 doses along with GD2-EVAT therapy) interfered with GD2-EVAT, while sequential anti-PD-1 (6 doses after GD2-EVAT) did not make a significant effect (P>0.05). On the other hand, while the concurrent use of anti-PD-L1 did not show benefit on GD2-EVAT, sequentially administered anti-PD-L1 produced a significant improvement in tumor control when compared to anti-PD-L1 or GD2-EVAT alone (P=0.002 and P=0.018). When anti-PD-L1 treatment was extended (12 doses after GD2-EVAT), the anti-tumor effect was most pronounced compared to GD2-EVAT alone (P <0.0001), which translated into improved survival (P=0.0057). These in vivo anti-tumor responses were associated with increased CD8(+) tumor infiltrating lymphocytes (TILs) of tumor. Conclusion In the arming platform, large numbers of target-specific T-cells can be generated, and this EVAT therapy is a highly effective cellular treatment with high potency in preclinical models. In addition, the advantage of ex vivo cytokine release following T-cell arming and activation could reduce or avoid life threatening cytokine storm if such activation was to proceed in vivo. Adoptive T-cell therapy induced immune response upregulates the inhibitory immune checkpoint PD-1/PD-L1 pathway, and combination treatment with anti-PD-L1 antibody, especially when combined as sequential therapy and continuously treated, significantly improved anti-tumor effect of EVAT, partly through increase in CD8(+) TILs infiltration. Disclosures Xu: MSK: Other: co-inventors in patents on GD2 bispecific antibody and HER2 bispecific antibody. Cheung:Ymabs: Patents & Royalties, Research Funding.


2012 ◽  
Vol 32 (suppl_1) ◽  
Author(s):  
Martin Rouer ◽  
Martin Rouer ◽  
Jean-Marc Alsac ◽  
Jean-Baptiste Michel

Introduction Biological study of the impact of endovascular aortic repair (EVAR) on pathophysiology of aortic abdominal aneurysms (AAA) can only be performed indirectly in humans, by imaging or search for peripheral biomarkers in the circulating blood. Therefore biological mechanism’s modifications into the aneurismal wall related to its endovascular exclusion are still to be elucidated, and small animal models should bring a valuable help in this field. We describe a new experimental model of stentgraft implantation for the exclusion of AAA in rats. Methods Aneurysms were induced as previously described by intra-aortic elastase injection in Wistar rats, or by aortic decellularized xenograft transplantation in Lewis rats. At least 15 days later, the midline laparotomy was reopened, and 3mm covered stentgraft were inserted and deployed in the AAA to obtain its exclusion. The patency of the graft and the AAA exclusion could be assessed by a global arteriogram through the carotid artery. After closure of the laparotomy, the rats were awakened and returned to a normal diet. Results This experimental model of AAA exclusion by a stentgraft allows many in vivo and ex vivo studies of the pathophysiology of AAA after EVAR. Histological modifications of the aortic wall and the intra-luminal thrombus could be assessed. The impact of EVAR on the adventitial immuno-inflammatory activity could be studied by different imaging such as MRI, scintigraphy or PET-scan. In situ biological and enzymatic activities could be evaluated to better understand the local mechanisms leading to AAA shrinkage or expansion after EVAR. Conclusion Exclusion by stentgraft of experimental AAA in rats is the first described model of EVAR in small animals. It is feasible and reproducible for both elastase and xenograft experimental AAA models. This model will definitely help to a better analysis and understanding of the impact of stentgrafting on biological mechanisms in the aneurismal wall, that lead to EVAR success with shrinkage of aneurismal sac or EVAR failure with its continuing expansion.


mBio ◽  
2019 ◽  
Vol 10 (6) ◽  
Author(s):  
Payal Joglekar ◽  
Hua Ding ◽  
Pablo Canales-Herrerias ◽  
Pankaj Jay Pasricha ◽  
Justin L. Sonnenburg ◽  
...  

ABSTRACT Gut-derived immunoglobulin A (IgA) is the most abundant antibody secreted in the gut that shapes gut microbiota composition and functionality. However, most of the microbial antigens targeted by gut IgA remain unknown, and the functional effects of IgA targeting these antigens are currently understudied. This study provides a framework for identifying and characterizing gut microbiota antigens targeted by gut IgA. We developed a small intestinal ex vivo culture assay to harvest lamina propria IgA from gnotobiotic mice, with the aim of identifying antigenic targets in a model human gut commensal, Bacteroides thetaiotaomicron VPI-5482. Colonization by B. thetaiotaomicron induced a microbe-specific IgA response that was reactive against diverse antigens, including capsular polysaccharides, lipopolysaccharides, and proteins. IgA against microbial protein antigens targeted membrane and secreted proteins with diverse functionalities, including an IgA specific against proteins of the polysaccharide utilization locus (PUL) that are necessary for utilization of fructan, which is an important dietary polysaccharide. Further analyses demonstrated that the presence of dietary fructan increased the production of fructan PUL-specific IgA, which then downregulated the expression of fructan PUL in B. thetaiotaomicron, both in vivo and in vitro. Since the expression of fructan PUL has been associated with the ability of B. thetaiotaomicron to colonize the gut in the presence of dietary fructans, our work suggests a novel role for gut IgA in regulating microbial colonization by modulating their metabolism. IMPORTANCE Given the significant impact that gut microbes have on our health, it is essential to identify key host and environmental factors that shape this diverse community. While many studies have highlighted the impact of diet on gut microbiota, little is known about how the host regulates this critical diet-microbiota interaction. In our present study, we discovered that gut IgA targeted a protein complex involved in the utilization of an important dietary polysaccharide: fructan. While the presence of dietary fructans was previously thought to allow unrestricted growth of fructan-utilizing bacteria, our work shows that gut IgA, by targeting proteins responsible for fructan utilization, provides the host with tools that can restrict the microbial utilization of such polysaccharides, thereby controlling their growth.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Lyess Allas ◽  
Sybille Brochard ◽  
Quitterie Rochoux ◽  
Jules Ribet ◽  
Cleo Dujarrier ◽  
...  

Abstract Histone methyltransferase EZH2 is upregulated during osteoarthritis (OA), which is the most widespread rheumatic disease worldwide, and a leading cause of disability. This study aimed to assess the impact of EZH2 inhibition on cartilage degradation, inflammation and functional disability. In vitro, gain and loss of EZH2 function were performed in human articular OA chondrocytes stimulated with IL-1β. In vivo, the effects of EZH2 inhibition were investigated on medial meniscectomy (MMX) OA mouse model. The tissue alterations were assayed by histology and the functional disabilities of the mice by actimetry and running wheel. In vitro, EZH2 overexpression exacerbated the action of IL-1β in chondrocytes increasing the expression of genes involved in inflammation, pain (NO, PGE2, IL6, NGF) and catabolism (MMPs), whereas EZH2 inhibition by a pharmacological inhibitor, EPZ-6438, reduced IL-1β effects. Ex vivo, EZH2 inhibition decreased IL-1β-induced degradation of cartilage. In vivo, intra-articular injections of the EZH2 inhibitor reduced cartilage degradation and improved motor functions of OA mice. This study demonstrates that the pharmacological inhibition of the histone methyl-transferase EZH2 slows the progression of osteoarthritis and improves motor functions in an experimental OA model, suggesting that EZH2 could be an effective target for the treatment of OA by reducing catabolism, inflammation and pain.


ILAR Journal ◽  
2019 ◽  
Vol 60 (1) ◽  
pp. 17-23 ◽  
Author(s):  
Malcolm Macleod ◽  
Swapna Mohan

Abstract Increasing focus on issues of research reproducibility affords us the opportunity to review some of the key issues related in vivo research. First, we set out some key definitions, to guide the reader through the rest of the paper. Next we consider issues of epistemology, of how animal experiments lead to changes in our understanding of biomedicine and, potentially, to the development of new therapeutics. Here we consider the meaning of statistical significance; the importance of understanding whether findings have general truth; and the advances in knowledge which can result from ‘failed’ replication. Then, we consider weaknesses in the design, conduct and reporting of experiments, and review evidence for this from systematic reviews and from experimental studies addressing these issues. We consider the impact that these weaknesses have on the development of new treatments for human disease, and reflect on the response to these issues from the biomedical research community. Finally, we consider strategies for improvement including increased use of brief, pre-registered study protocols; pre-registration, open publication and open data; and the central importance of education in improving research performance.


2019 ◽  
Vol 110 (7-8) ◽  
pp. 671-687 ◽  
Author(s):  
Eulalia A. Coutinho ◽  
Melanie Prescott ◽  
Sabine Hessler ◽  
Christopher J. Marshall ◽  
Allan E. Herbison ◽  
...  

Introduction: The central regulation of fertility is carefully coordinated with energy homeostasis, and infertility is frequently the outcome of energy imbalance. Neurons in the hypothalamus expressing neuropeptide Y and agouti-related peptide (NPY/AgRP neurons) are strongly implicated in linking metabolic cues with fertility regulation. Objective: We aimed here to determine the impact of selectively activating NPY/AgRP neurons, critical regulators of metabolism, on the activity of luteinizing hormone (LH) pulse generation. Methods: We employed a suite of in vivo optogenetic and chemogenetic approaches with serial measurements of LH to determine the impact of selectively activating NPY/AgRP neurons on dynamic LH secretion. In addition, electrophysiological studies in ex vivo brain slices were employed to ascertain the functional impact of activating NPY/AgRP neurons on gonadotropin-releasing hormone (GnRH) neurons. Results: Selective activation of NPY/AgRP neurons significantly decreased post-castration LH secretion. This was observed in males and females, as well as in prenatally androgenized females that recapitulate the persistently elevated LH pulse frequency characteristic of polycystic ovary syndrome (PCOS). Reduced LH pulse frequency was also observed when optogenetic stimulation was restricted to NPY/AgRP fiber projections surrounding GnRH neuron cell bodies in the rostral preoptic area. However, electrophysiological studies in ex vivo brain slices indicated these effects were likely to be indirect. Conclusions: These data demonstrate the ability of NPY/AgRP neuronal signaling to modulate and, specifically, reduce GnRH/LH pulse generation. The findings suggest a mechanism by which increased activity of this hunger circuit, in response to negative energy balance, mediates impaired fertility in otherwise reproductively fit states, and highlight a potential mechanism to slow LH pulsatility in female infertility disorders, such as PCOS, that are associated with hyperactive LH secretion.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3106-3106
Author(s):  
Bruno Nervi ◽  
Michael P. Rettig ◽  
Julie K. Ritchey ◽  
Gerhard Bauer ◽  
Jon Walker ◽  
...  

Abstract GvHD remains a major cause of morbidity and mortality following allogeneic hematopoietic stem cell transplantation and donor lymphocyte infusion. The human GvHD pathophysiology includes recipient tissue destruction and proinflammatory cytokine production associated with the conditioning regimen; donor T cells become allo-activated, proliferate, and mediate tissue injury in various organs, including the liver, skin, and gut. Modern therapeutic strategies to control GvHD while maintaining the beneficial graft-versus-leukemia effects require ex vivo T cell stimulation and expansion. Multiple studies have demonstrated that these ex vivo expanded T cells exhibit decreased survival and function in vivo, including reduced alloreactivity and GvHD potential. Unfortunately no in vivo models exist to consistently examine the impact of ex vivo manipulation of human T cells (HuT) on T cell function. Naive HuT were compared to HuT activated using CD3/28 beads (XcyteTMDynabeads) with 50 U/ml IL-2 for 4 days (Act). We initially evaluated the HuT engraftment and GvHD potential of naive and Act in RAG2γ null mice (n=22) conditioned with clodronate liposomes on day −1 and 350cGy on day 0, as previously described by others. We injected 107 and 1.5x107 naive or Act HuT intravenously (iv). All mice exhibited low HuT engraftment and no lethal GvHD. NOD SCIDβ 2M null mice (β 2M) were next conditioned with 250cGy on day −1 (n=34), or 300cGy on day 0 (n=21). 107 naive vs Act HuT were injected retroorbitaly (ro). Lower HuT doses or iv injection resulted in no expansion or GvHD. Engraftment of HuT in peripheral blood of recipient mice was evaluated weekly by FACS and euthanasia was performed if mice lost &gt; 20% body weight. 60% of the mice conditioned with 250cGy that received naive HuT developed lethal GvHD, in comparison to 75% of mice that received 300cGy and nave HuT, and 100% of mice that received 300cGy and Act HuT. Table 1 250cGy 300cGy Naive (n=34) Naive (n=8) Activated (n=13) *p&lt;0.02 PB engraftment (%HuT) 20%±15 33%±21 59%±19 Lethal GvHD 60% 75% 100% All mice receiving 300cGy had well preserved CD4/CD8 ratios (1–1.5). Tissue infiltration was greatest in mice that had received 300cGy and Act HuT (spleen, liver, lung, kidney: 50–70%). Of interest, serum levels of hu IFNγ dramatically increased over time in all mice who went on to develop lethal GvHD (day 3=270 ug/ml and day 15=36,000 ug/ml) compared to mice that did not develop lethal GvHD (day 10=40 ug/ml and day 17=1,020 ug/ml)(p&lt;0.05). Interestingly, the up-regulation of the activation markers CD25 and CD30 in HuT, and IFNγ production predicted lethal GvHD in β 2M null mice. In summary, we developed a xenogeneic model of lethal GvHD where naive or ex vivo Act HuT injected ro in sublethaly irradiated β 2M not only engraft, expand in vivo, but also infiltrate and damage different mouse target organs. HuT are allo-activated against mouse antigens and damage the target tissues, sharing the major characteristics of human GvHD and causing the death of mice. This model will allow us to study the effects of specific ex vivo T cell manipulation including transduction, selection, expansion, and the depletion or addition of various T cells and other cellular subsets on the outcome of GvHD, to determine improved therapeutic interventions.


Sign in / Sign up

Export Citation Format

Share Document