scholarly journals Three types of passivators on the stabilization of exogenous lead-contaminated soil with different particle sizes

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shuai Zhao ◽  
Xiongfei Cai ◽  
Ji Wang ◽  
Ding Li ◽  
Shijie Zhao ◽  
...  

AbstractStudy on the form partitioning and content of heavy metals in soil particles with different sizes is crucial for preventing and controlling heavy metals pollution, but few studies regard soil contaminated by heavy metals as a homogeneous body. In this study (Fig. 1), goat manure, lime and phosphate were used to stabilize exogenous lead (Pb). These soil passivators’ differential effects on total Pb and Pb with different chemical forms in soil particles of different sizes as well as Pb immobilization in soil were investigated. By passivation experiment in laboratory for 45 days, the passivation effect of the single and combined application treatments on exogenous Pb and partitioning characteristics were analyzed and compared. The characterization method of fine sand microstructure and mineral composition analysis was used. The results showed that the single application of P5 and combined application of LP5 had optimum passivation efficiency. The content of DTPA-Pb was reduced with P5 by 65.27% and the percentage of available Pb decreased significantly in soil particles of the four sizes. The content of TCLP-Pb and available Pb (weak acid extraction and reducible Pb) significantly decreased by 71.60 and 25.12% respectively after the application of LP5 in the original soil. Furthermore, most of the total Pb was enriched in coarse sand and clay, while its content was lower in fine sand and silt. The combined application treatment of GL5 significantly increased the content of weak acid extractable and reducible Pb in fine sand, silty sand and clay. Through SEM and XRD analysis, it was found that the diffraction peak of P5 treatment groups might be related to the formation of insoluble Pb that contained compounds, which were mainly mineral components, including quartz, feldspar and mica, and LP showed a big potential in the study on passivation of heavy metal Pb-contaminated soil in the natural environment. In conclusion, further studies on the different dosage and metal-contamination levels as well as different combination forms of passivators should be considered under natural conditions, the selection of suitable passivators according to soil texture is of great significance for remediation of Pb-contaminated soil.

2015 ◽  
Vol 5 (3) ◽  
pp. 1-6 ◽  
Author(s):  
Zainab Siddiqui ◽  
◽  
S.M Ali Jawaid ◽  
Sandeep Vishen ◽  
Shreya Verma ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
pp. 333-347
Author(s):  
Shahid Sher ◽  
Abdul Ghani ◽  
Sikandar Sultan ◽  
Abdul Rehman

Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 448
Author(s):  
Mahrous Awad ◽  
Zhongzhen Liu ◽  
Milan Skalicky ◽  
Eldessoky S. Dessoky ◽  
Marian Brestic ◽  
...  

Heavy metals (HMs) toxicity represents a global problem depending on the soil environment’s geochemical forms. Biochar addition safely reduces HMs mobile forms, thus, reducing their toxicity to plants. While several studies have shown that biochar could significantly stabilize HMs in contaminated soils, the study of the relationship of soil properties to potential mechanisms still needs further clarification; hence the importance of assessing a naturally contaminated soil amended, in this case with Paulownia biochar (PB) and Bamboo biochar (BB) to fractionate Pb, Cd, Zn, and Cu using short sequential fractionation plans. The relationship of soil pH and organic matter and its effect on the redistribution of these metals were estimated. The results indicated that the acid-soluble metals decreased while the fraction bound to organic matter increased compared to untreated pots. The increase in the organic matter metal-bound was mostly at the expense of the decrease in the acid extractable and Fe/Mn bound ones. The highest application of PB increased the organically bound fraction of Pb, Cd, Zn, and Cu (62, 61, 34, and 61%, respectively), while the BB increased them (61, 49, 42, and 22%, respectively) over the control. Meanwhile, Fe/Mn oxides bound represents the large portion associated with zinc and copper. Concerning soil organic matter (SOM) and soil pH, as potential tools to reduce the risk of the target metals, a significant positive correlation was observed with acid-soluble extractable metal, while a negative correlation was obtained with organic matter-bound metal. The principal component analysis (PCA) shows that the total variance represents 89.7% for the TCPL-extractable and HMs forms and their relation to pH and SOM, which confirms the positive effect of the pH and SOM under PB and BB treatments on reducing the risk of the studied metals. The mobility and bioavailability of these metals and their geochemical forms widely varied according to pH, soil organic matter, biochar types, and application rates. As an environmentally friendly and economical material, biochar emphasizes its importance as a tool that makes the soil more suitable for safe cultivation in the short term and its long-term sustainability. This study proves that it reduces the mobility of HMs, their environmental risks and contributes to food safety. It also confirms that performing more controlled experiments, such as a pot, is a disciplined and effective way to assess the suitability of different types of biochar as soil modifications to restore HMs contaminated soil via controlling the mobilization of these minerals.


2012 ◽  
Vol 620 ◽  
pp. 469-473 ◽  
Author(s):  
Norhashimah Ramli ◽  
Mohammad Hafizuddin Haji Jumali ◽  
Wan Safizah Wan Salim

Dredging along Kuala Perlis Jetty results in huge amount of marine sediments which has thrown considerable challenge for disposal. This research was conducted to characterize dredged marine sediment which was collected at Kuala Perlis Jetty as potential raw material for brick production. Three different characterizations were performed namely XRF, XRD and FTIR. XRF analysis showed the presence of SiO2 and Al2O3 as major quantities. Low concentration of heavy metals namely As, Cr, Cu, Pb, Ni and Zn presence in the sediment comply the US EPA guideline for brick production. XRD analysis indicated the presence of quartz as primary mineral while kaolinite and illite also present as secondary and ternary phases. FTIR analysis identified various form of minerals presence in the samples which strongly supported XRD results.


2014 ◽  
Vol 104 ◽  
pp. 414-422 ◽  
Author(s):  
Dilna Damodaran ◽  
K. Vidya Shetty ◽  
B. Raj Mohan

2009 ◽  
Vol 167 (1-3) ◽  
pp. 164-169 ◽  
Author(s):  
Wan-Xia Ren ◽  
Pei-Jun Li ◽  
Yong Geng ◽  
Xiao-Jun Li

2019 ◽  
Vol 42 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Sadia Qayyum ◽  
Ke Meng ◽  
Sidra Pervez ◽  
Faiza Nawaz ◽  
Changsheng Peng

Abstract Soil contamination with heavy metal content is a growing concern throughout the world as a result of industrial, mining, agricultural and domestic activities. Fungi are the most common and efficient group of heavy metal resistant microbe family which have potential for metal bioleaching. The use of filamentous fungi in bioleaching of heavy metals from contaminated soil has been developed recently. The current study intends to isolate a strain with the ability to degrade the pH value of the liquid medium. Identification results based on morphological and molecular biological analysis gave a 98% match to Aspergillus flavus. Batch experiments were conducted to select the optimal conditions for bioleaching process which indicated that 130 mg/ L sucrose, neutral pH and temperature of 30°C were more suitable during 15-day bioleaching experiments using A. flavus. In one-step bioleaching, the bioleaching efficiencies were 18.16% for Pb, 39.77% for Cd and 58.22% for Zn+2, while two-step bioleaching showed efficiencies of 16.91% for Pb, 49.66% for Cd and 65.73% for Zn+2. Overall, this study indicates that bioleaching of heavy metals in contaminated soil using A. flavus has the potential for contaminated soil remediation.


Sign in / Sign up

Export Citation Format

Share Document