scholarly journals Effect of dual-rotation on MHD natural convection of NEPCM in a hexagonal-shaped cavity based on time-fractional ISPH method

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zehba Raizah ◽  
Abdelraheem M. Aly

AbstractThe time-fractional derivative based on the Grunwald–Letnikove derivative of the 2D-ISPH method is applying to emulate the dual rotation on MHD natural convection in a hexagonal-shaped cavity suspended by nano-encapsulated phase change material (NEPCM). The dual rotation is performed between the inner fin and outer hexagonal-shaped cavity. The impacts of a fractional time derivative $$\alpha$$ α $$\left( {0.92 \le \alpha \le 1} \right)$$ 0.92 ≤ α ≤ 1 , Hartmann number Ha $$\left( {0 \le Ha \le 80} \right)$$ 0 ≤ H a ≤ 80 , fin length $$\left( {0.2 \le L_{Fin} \le 1} \right)$$ 0.2 ≤ L Fin ≤ 1 , Darcy parameter Da $$\left( {10^{ - 2} \le Da \le 10^{ - 4} } \right)$$ 10 - 2 ≤ D a ≤ 10 - 4 , Rayleigh number Ra $$\left( {10^{3} \le Ra \le 10^{6} } \right)$$ 10 3 ≤ R a ≤ 10 6 , fusion temperature $$\theta_{f}$$ θ f $$\left( {0.05 \le \theta_{f} \le 0.8} \right)$$ 0.05 ≤ θ f ≤ 0.8 , and solid volume fraction $$\varphi$$ φ $$\left( {0 \le \varphi \le 0.06} \right)$$ 0 ≤ φ ≤ 0.06 on the velocity field, isotherms, and mean Nusselt number $$\overline{Nu}$$ Nu ¯ are discussed. The outcomes signaled that a dual rotation of the inner fin and outer domain is affected by a time-fractional derivative. The inserted cool fin is functioning efficiently in the cooling process and adjusting the phase change zone within a hexagonal-shaped cavity. An increment in fin length augments the cooling process and changes the location of a phase change zone. A fusion temperature $$\theta_{f}$$ θ f adjusts the strength and position of a phase change zone. The highest values of $$\overline{Nu}$$ Nu ¯ are obtained when $$\alpha = 1$$ α = 1 . An expansion in Hartmann number $$Ha $$ Ha reduces the values of $$\overline{Nu}$$ Nu ¯ . Adding more concentration of nanoparticles is improving the values of $$\overline{Nu}$$ Nu ¯ .

1979 ◽  
Vol 101 (4) ◽  
pp. 578-584 ◽  
Author(s):  
E. M. Sparrow ◽  
J. W. Ramsey ◽  
R. G. Kemink

Experiments were performed for freezing under conditions where the liquid phase is either above or at the fusion temperature (i.e., superheated or nonsuperheated liquid). The liquid was housed in a cylindrical containment vessel whose surface was maintained at a uniform, time-invariant temperature during a data run, and the freezing occurred on a cooled vertical tube positioned along the axis of the vessel. The phase change medium was n-eicosane, a paraffin which freezes at about 36°C (97°F). In the presence of liquid superheating, the freezing process is drastically slowed and ultimately terminated by the natural convection in the liquid. The terminal size of the frozen layer and the time at which freezing terminates can be controlled by setting the temperature parameters which govern the intensity of the natural convection. The stronger the natural convection, the thinner the frozen layer and the shorter the freezing time. In the absence of liquid superheating, a cylindrical frozen layer grows continuously as predicted by theory, but the growth rate is higher than the predictions because of the presence of whisker-like dendrites on the freezing surface.


2020 ◽  
Vol 23 (6) ◽  
pp. 1647-1662
Author(s):  
Ravshan Ashurov ◽  
Sabir Umarov

Abstract The identification of the right order of the equation in applied fractional modeling plays an important role. In this paper we consider an inverse problem for determining the order of time fractional derivative in a subdiffusion equation with an arbitrary second order elliptic differential operator. We prove that the additional information about the solution at a fixed time instant at a monitoring location, as “the observation data”, identifies uniquely the order of the fractional derivative.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1508
Author(s):  
Mohammad Ghalambaz ◽  
Mohammad Shahabadi ◽  
S. A. M Mehryan ◽  
Mikhail Sheremet ◽  
Obai Younis ◽  
...  

The melting flow and heat transfer of copper-oxide coconut oil in thermal energy storage filled with a nonlinear copper metal foam are addressed. The porosity of the copper foam changes linearly from bottom to top. The phase change material (PCM) is filled into the metal foam pores, which form a composite PCM. The natural convection effect is also taken into account. The effect of average porosity; porosity distribution; pore size density; the inclination angle of enclosure; and nanoparticles’ concentration on the isotherms, melting maps, and the melting rate are investigated. The results show that the average porosity is the most important parameter on the melting behavior. The variation in porosity from 0.825 to 0.9 changes the melting time by about 116%. The natural convection flows are weak in the metal foam, and hence, the impact of each of the other parameters on the melting time is insignificant (less than 5%).


2016 ◽  
Vol 139 (1) ◽  
Author(s):  
Jinhu Zhao ◽  
Liancun Zheng ◽  
Xinxin Zhang ◽  
Fawang Liu ◽  
Xuehui Chen

This paper investigates natural convection heat transfer of generalized Oldroyd-B fluid in a porous medium with modified fractional Darcy's law. Nonlinear coupled boundary layer governing equations are formulated with time–space fractional derivatives in the momentum equation. Numerical solutions are obtained by the newly developed finite difference method combined with L1-algorithm. The effects of involved parameters on velocity and temperature fields are presented graphically and analyzed in detail. Results indicate that, different from the classical result that Prandtl number only affects the heat transfer, it has remarkable influence on both the velocity and temperature boundary layers, the average Nusselt number rises dramatically in low Prandtl number, but increases slowly with the augment of Prandtl number. The maximum value of velocity profile and the thickness of momentum boundary layer increases with the augment of porosity and Darcy number. Moreover, the relaxation fractional derivative parameter accelerates the convection flow and weakens the elastic effect significantly, while the retardation fractional derivative parameter slows down the motion and strengthens the elastic effect.


Ground Water ◽  
2017 ◽  
Vol 55 (6) ◽  
pp. 857-870 ◽  
Author(s):  
Rhiannon M. Garrard ◽  
Yong Zhang ◽  
Song Wei ◽  
HongGuang Sun ◽  
Jiazhong Qian

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
M. Sheikholeslami ◽  
R. Ellahi ◽  
C. Fetecau

Impact of nanofluid natural convection due to magnetic field in existence of melting heat transfer is simulated using CVFEM in this research. KKL model is taken into account to obtain properties of CuO–H2O nanofluid. Roles of melting parameter (δ), CuO–H2O volume fraction (ϕ), Hartmann number (Ha), and Rayleigh (Ra) number are depicted in outputs. Results depict that temperature gradient improves with rise of Rayleigh number and melting parameter. Nusselt number detracts with rise of Ha. At the end, a comparison as a limiting case of the considered problem with the existing studies is made and found in good agreement.


Fractals ◽  
2021 ◽  
Author(s):  
Siddra Habib ◽  
Amreen Batool ◽  
Asad Islam ◽  
Muhammad Nadeem ◽  
Khaled A. Gepreel ◽  
...  

2001 ◽  
Author(s):  
Y. Asako ◽  
E. Gonçalves ◽  
M. Faghri ◽  
M. Charmchi

Abstract Transport processes associated with melting of an electrically conducting Phase Change Material (PCM), placed inside a rectangular enclosure, under low-gravity environment, and in the presence of a magnetic field is simulated numerically. Electromagnetic forces damp the natural convection as well as the flow induced by sedimentation and/or floatation, and thereby simulating the low gravity environment of outer space. Computational experiments are conducted for both side-wall heating and top-wall heating under horizontal magnetic field. The governing equations are discretized using a control-volume-based finite difference scheme. Numerical solutions are obtained for true low-gravity environment as well as for the simulated-low-gravity conditions resulted by the presence of a horizontal magnetic field. The effects of magnetic field on the natural convection, solid phase floatation/sedimentation, liquid-solid interface location, solid melting rate, and flow patterns are investigated. It is found that the melting under low-gravity environment can reasonably be simulated on earth via applying a strong horizontal magnetic field. However, the flow patterns obtained for the true low-gravity cases are not similar to the corresponding cases solved for the simulated-low-gravity environment.


Sign in / Sign up

Export Citation Format

Share Document