scholarly journals Population structure and adaptive variation of Helichrysum italicum (Roth) G. Don along eastern Adriatic temperature and precipitation gradient

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tonka Ninčević ◽  
Marija Jug-Dujaković ◽  
Martina Grdiša ◽  
Zlatko Liber ◽  
Filip Varga ◽  
...  

AbstractImmortelle (Helichrysum italicum (Roth) G. Don; Asteraceae) is a perennial plant species native to the Mediterranean region, known for many properties with wide application mainly in perfume and cosmetic industry. A total of 18 wild H. italicum populations systematically sampled along the eastern Adriatic environmental gradient were studied using AFLP markers to determine genetic diversity and structure and to identify loci potentially responsible for adaptive divergence. Results showed higher levels of intrapopulation diversity than interpopulation diversity. Genetic differentiation among populations was significant but low, indicating extensive gene flow between populations. Bayesian analysis of population structure revealed the existence of two genetic clusters. Combining the results of FST - outlier analysis (Mcheza and BayeScan) and genome-environment association analysis (Samβada, LFMM) four AFLP loci strongly associated with the bioclimatic variables Bio03 Isothermality, Bio08 Mean temperature of the wettest quarter, Bio15 Precipitation seasonality, and Bio17 Precipitation of driest quarter were found to be the main variables driving potential adaptive genetic variation in H. italicum along the eastern Adriatic environmental gradient. Redundancy analysis revealed that the partitioning of genetic variation was mainly associated with the adaptation to temperature oscillations. The results of the research may contribute to a clearer understanding of the importance of local adaptations for the genetic differentiation of Mediterranean plants and allow the planning of appropriate conservation strategies. However, considering that the identified outlier loci may be linked to genes under selection rather than being the target of natural selection, future studies must aim at their additional analysis.

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10274 ◽  
Author(s):  
Mirella Pupo Santos ◽  
João V.S. Rabelo Araujo ◽  
Arthur V. Sant’anna Lopes ◽  
Julio Cesar Fiorio Vettorazzi ◽  
Marcela Santana Bastos Boechat ◽  
...  

Background Two endemic lycophyte species Isoetes cangae and Isoetes serracarajensis have been recently described in the State of Pará in the Amazon forest located in northern Brazil. Isoetes L. has survived through three mass extinctions. Plants are considered small-sized, heterosporous, and can display a great diversity of physiological adaptations to different environments. Thus, the current study aimed to estimate the genetic variation of the populations of I. cangae and I. serracarajensis to generate information about their different mechanisms for survival at the same geographical location that could point to different reproductive, adaptative and dispersal strategies and should be considered for effective conservation strategies. Methods The genetic diversity and population structure of I. cangae and I. serracarajensis were investigated using Inter Simple Sequence Repeat (ISSR) molecular markers. Total genomic DNA was isolated, and the genetic diversity parameters were calculated. Results The sixteen primers produced 115 reproducible bands, 87% of which were polymorphic. A high level of polymorphic loci (81.74% and 68.48%) and a high Shannon index (Sh = 0.376 and 0.289) were observed for I. cangae and I. serracarajensis, respectively. The coefficient of genetic differentiation between population areas (GST) showed a higher value in I. serracarajensis (0.5440). Gene flow was higher in I. cangae (1.715) and lower in I. serracarajensis populations (0.419). Overall, the results further show that I. serracarajensis and I. cangae are two species with considerable genetic variation and that these differences may reflect their habitats and modes of reproduction. These results should be considered in the development of effective conservation strategies for both species.


Forests ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1287
Author(s):  
Rahmah N. Al-Qthanin ◽  
Samah A. Alharbi

Avicennia marina (Forssk.) Vierh is distributed in patches along the Farasan archipelago coast and is the most common mangrove species in the Red Sea. However, to date, no studies have been directed towards understanding its genetic variation in the Farasan archipelago. In this investigation, genetic variations within and among natural populations of Avicennia marina in the Farasan archipelago were studied using 15 microsatellite markers. The study found 142 alleles on 15 loci in nine populations. The observed (Ho) and expected (He) heterozygosity values were 0.351 and 0.391, respectively, which are much lower than those of earlier studies on A. marina in the Arabian Gulf. An inbreeding effect from self-pollination might explain its heterozygote deficiency. Population genetic differentiation (FST = 0.301) was similar to other mangrove species. Our findings suggest that the sea current direction and coastal geomorphology might affect genetic dispersal of A. marina. The more isolated populations with fewer connections by sea currents exhibited lower genetic variation and differentiation between populations. The genetic clustering of populations fell into three main groups—Group 1 (populations of Farasan Alkabir Island), Group 2 (populations of Sajid Island), and Group 3 (mix of one population of Farasan Alkabir Island and a population of Zifaf Island). More genetic variation and less genetic differentiation occurred when the population was not isolated and had a direct connection with sea currents. Both of these factors contributed to limited propagule dispersal and produced significant structures among the population. It is expected that the results of this research will be useful in determining policy and species-conservation strategies and in the rehabilitation of A. marina mangrove stands on the Farasan islands in an effort to save this significant natural resource.


AoB Plants ◽  
2019 ◽  
Vol 11 (4) ◽  
Author(s):  
Alice Backes ◽  
Geraldo Mäder ◽  
Caroline Turchetto ◽  
Ana Lúcia Segatto ◽  
Jeferson N Fregonezi ◽  
...  

Abstract Different genetic patterns have been demonstrated for narrowly distributed taxa, many of them linking rarity to evolutionary history. Quite a few species in young genera are endemics and have several populations that present low variability, sometimes attributed to geographical isolation or dispersion processes. Assessing the genetic diversity and structure of such species may be important for protecting them and understanding their diversification history. In this study, we used microsatellite markers and plastid sequences to characterize the levels of genetic variation and population structure of two endemic and restricted species that grow in isolated areas on the margin of the distribution of their respective genera. Plastid and nuclear diversities were very low and weakly structured in their populations. Evolutionary scenarios for both species are compatible with open-field expansions during the Pleistocene interglacial periods and genetic variability supports founder effects to explain diversification. At present, both species are suffering from habitat loss and changes in the environment can lead these species towards extinction.


2020 ◽  
Author(s):  
Yufang Shen ◽  
Hui Xia ◽  
Zhonghua Tu ◽  
Yaxian Zong ◽  
Lichun Yang ◽  
...  

Abstract Background: Adaptive genetic differentiation is a hotspot in the research of speciation mechanisms in evolutionary biology. Genomic resources are important for detecting ecological adaptive evolution of non-model plants. Using RNA-seq for non-model plants is a good approach to obtain their genomic resources. The combination of population transcriptome resources and environmental data can provide insights into the genetic mechanism of adaptive genetic differentiation.Results: Based on the population transcriptome data, we investigated the spatial distribution of genetic variations in Liriodendron to detect relationships between ecological factors and genetic differentiation. Environmental data and genetic variations from 17 populations were integrated to detect the population structure, adaptive genes and key environmental factors that shape the population genetic structure by landscape genetic approach. Here, we identified 16592 high-quality single nucleotide polymorphisms (SNPs). The population structure analysis results showed that 17 populations were divided into three groups: L. tulipifera, eastern group and western group of L. chinense. Redundancy analysis and latent factor mixed model analysis suggested that precipitation seasonality, precipitation in the driest quarter, diurnal temperature, and solar radiation in May were closely associated with the adaptive genetic differentiation of Liriodendron. Ecological niche differentiation analysis implied significant ecological niche divergence between L. chinense and L. tulipifera habitats. In total, 858 environment-related loci were identified, which were associated with 464 genes. Pathway enrichment analysis revealed that these genes were significantly enriched in multiple biological pathways. Related studies confirmed that these biological pathways play vital roles in plant growth, development, stress, immune response and photosynthesis.Conclusions: Our research provided empirical evidence that environmental factors may play a key role in driving adaptive genetic differentiation of species. Furthermore, the combination of population transcriptome resources and environmental datasets provides new insights into the study of adaptive genetic differentiation of species.


2021 ◽  
Author(s):  
◽  
Catarina Nunes Soares Silva

<p>Knowledge about the population genetic structure of species and the factors shaping such patterns is crucial for effective management and conservation. The complexity of New Zealand’s marine environment presents a challenge for management and the classification of its marine biogeographic areas. As such, it is an interesting system to investigate marine connectivity dynamics and the evolutionary processes shaping the population structure of marine species. An accurate description of spatial and temporal patterns of dispersal and population structure requires the use of tools capable of incorporating the variability of the mechanisms involved. However, these techniques are yet to be broadly applied to New Zealand marine organisms.  This study used genetic markers to assess the genetic variation of the endemic New Zealand scallop, Pecten novaezelandiae, at different spatial and temporal scales. A multidisciplinary approach was used integrating genetic with environmental data (seascape genetics) and hydrodynamic modelling tools. P. novaezelandiae supports important commercial, recreational and customary fisheries but there is no previous information about its genetic structure. Therefore, twelve microsatellite markers were developed for this study (Chapter 2).  Samples (n=952) were collected from 15 locations to determine the genetic structure across the distribution range of P. novaezelandiae. The low genetic structure detected in this study is expected given the recent evolutionary history, the large reproductive potential and the pelagic larval duration of the species (approximately 3 weeks). A significant isolation by distance signal and a degree of differentiation from north to south was apparent, but this structure conflicted with some evidence of panmixia. A latitudinal genetic diversity gradient was observed that might reflect the colonisation and extinction events and insufficient time to reach migration-drift equilibrium during a recent range expansion (Chapter 3).  A seascape genetic approach was used to test for associations between patterns of genetic variation in P. novaezelandiae and environmental variables (three geospatial and six environmental variables). Although the geographic distance between populations was an important variable explaining the genetic variation among populations, it appears that levels of genetic differentiation are not a simple function of distance. Evidence suggests that some environmental factors such as freshwater discharge and suspended particulate matter can be contributing to the patterns of genetic differentiation of P. novaezelandiae in New Zealand (Chapter 4).  Dispersal of P. novaezelandiae was investigated at a small spatial and temporal scale in the Coromandel fishery using genetic markers integrated with hydrodynamic modelling. For the spatial analysis, samples (n=402) were collected in 2012 from 5 locations and for the temporal analysis samples (n=383) were collected in 2012 and 2014 from 3 locations. Results showed small but significant spatial and temporal genetic differentiation, suggesting that the Coromandel fishery does not form a single panmictic unit with free gene flow and supporting a model of source-sink population dynamics (Chapter 5).  The importance of using multidisciplinary approaches at different spatial and temporal scales is widely recognized as a means to better understand the complex processes affecting marine connectivity. The outcomes of this study highlight the importance of incorporating these different approaches, provide vital information to assist in effective management and conservation of P. novaezelandiae and contribute to our understanding of evolutionary processes shaping population structure of marine species.</p>


Forests ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 469 ◽  
Author(s):  
Yanwen Deng ◽  
Tingting Liu ◽  
Yuqing Xie ◽  
Yaqing Wei ◽  
Zicai Xie ◽  
...  

Research Highlights: This study is the first to examine the genetic diversity of Michelia shiluensis (Magnoliaceae). High genetic diversity and low differentiation were detected in this species. Based on these results, we discuss feasible protection measures to provide a basis for the conservation and utilization of M. shiluensis. Background and Objectives: Michelia shiluensis is distributed in Hainan and Guangdong province, China. Due to human disturbance, the population has decreased sharply, and there is thus an urgent need to evaluate genetic variation within this species in order to identify an optimal conservation strategy. Materials and Methods: In this study, we used eight nuclear single sequence repeat (nSSR) markers and two chloroplast DNA (cpDNA) markers to assess the genetic diversity, population structure, and dynamics of 78 samples collected from six populations. Results: The results showed that the average observed heterozygosity (Ho), expected heterozygosity (He), and percentage of polymorphic loci (PPL) from nSSR markers in each population of M. shiluensis were 0.686, 0.718, and 97.92%, respectively. For cpDNA markers, the overall haplotype diversity (Hd) was 0.674, and the nucleotide diversity was 0.220. Analysis of markers showed that the genetic variation between populations was much lower based on nSSR than on cpDNA (10.18% and 77.56%, respectively, based on an analysis of molecular variance (AMOVA)). Analysis of the population structure based on the two markers shows that one of the populations (DL) is very different from the other five. Conclusions: High genetic diversity and low population differentiation of M. shiluensis might be the result of rich ancestral genetic variation. The current decline in population may therefore be due to human disturbance rather than to inbreeding or genetic drift. Management and conservation strategies should focus on maintaining the genetic diversity in situ, and on the cultivation of seedlings ex-situ for transplanting back to their original habitat.


2021 ◽  
Author(s):  
◽  
Catarina Nunes Soares Silva

<p>Knowledge about the population genetic structure of species and the factors shaping such patterns is crucial for effective management and conservation. The complexity of New Zealand’s marine environment presents a challenge for management and the classification of its marine biogeographic areas. As such, it is an interesting system to investigate marine connectivity dynamics and the evolutionary processes shaping the population structure of marine species. An accurate description of spatial and temporal patterns of dispersal and population structure requires the use of tools capable of incorporating the variability of the mechanisms involved. However, these techniques are yet to be broadly applied to New Zealand marine organisms.  This study used genetic markers to assess the genetic variation of the endemic New Zealand scallop, Pecten novaezelandiae, at different spatial and temporal scales. A multidisciplinary approach was used integrating genetic with environmental data (seascape genetics) and hydrodynamic modelling tools. P. novaezelandiae supports important commercial, recreational and customary fisheries but there is no previous information about its genetic structure. Therefore, twelve microsatellite markers were developed for this study (Chapter 2).  Samples (n=952) were collected from 15 locations to determine the genetic structure across the distribution range of P. novaezelandiae. The low genetic structure detected in this study is expected given the recent evolutionary history, the large reproductive potential and the pelagic larval duration of the species (approximately 3 weeks). A significant isolation by distance signal and a degree of differentiation from north to south was apparent, but this structure conflicted with some evidence of panmixia. A latitudinal genetic diversity gradient was observed that might reflect the colonisation and extinction events and insufficient time to reach migration-drift equilibrium during a recent range expansion (Chapter 3).  A seascape genetic approach was used to test for associations between patterns of genetic variation in P. novaezelandiae and environmental variables (three geospatial and six environmental variables). Although the geographic distance between populations was an important variable explaining the genetic variation among populations, it appears that levels of genetic differentiation are not a simple function of distance. Evidence suggests that some environmental factors such as freshwater discharge and suspended particulate matter can be contributing to the patterns of genetic differentiation of P. novaezelandiae in New Zealand (Chapter 4).  Dispersal of P. novaezelandiae was investigated at a small spatial and temporal scale in the Coromandel fishery using genetic markers integrated with hydrodynamic modelling. For the spatial analysis, samples (n=402) were collected in 2012 from 5 locations and for the temporal analysis samples (n=383) were collected in 2012 and 2014 from 3 locations. Results showed small but significant spatial and temporal genetic differentiation, suggesting that the Coromandel fishery does not form a single panmictic unit with free gene flow and supporting a model of source-sink population dynamics (Chapter 5).  The importance of using multidisciplinary approaches at different spatial and temporal scales is widely recognized as a means to better understand the complex processes affecting marine connectivity. The outcomes of this study highlight the importance of incorporating these different approaches, provide vital information to assist in effective management and conservation of P. novaezelandiae and contribute to our understanding of evolutionary processes shaping population structure of marine species.</p>


2021 ◽  
Vol 22 (10) ◽  
Author(s):  
Zulfahmi Zulfahmi ◽  
Parjanto Parjanto ◽  
Edi Purwanto ◽  
Ahmad Yunus

Abstract. Zulfahmi, Parjanto, Purwanto E, Yunus A. 2021. Genetic diversity and population structure of Eurycoma apiculata in Eastern Sumatra, Indonesia. Biodiversitas 22: 4431-4439. Information on genetic variation within and among populations of Eurycoma apiculata plants is important to develop strategies for their conservation, sustainable use, and genetic improvement. To date, no information on genetic variation within and among populations of the E. apiculata has been reported. This study aims to assess genetic diversity within and among populations of E. apiculata based on RAPD markers, and to determine populations to collect E. apiculata genetic material for conservation and breeding programs. Young leaves of E. apiculata were collected from six natural populations. Fifteen RAPD primers were used to assess the genetic diversity of each population. The data obtained were analyzed with POPGEN and Arlequin software. The amplification results of 15 selected primers produced 3-16 loci with all primers 100% polymorphic. At the species level, the mean allele per locus (Na), number of effective alleles (Ne), percentage of polymorphic loci (PPL), Nei’s gene diversity index (He) and Shannon information index (I) were 2.000, 1.244, 100%, 0.167, and 0.286, respectively. At the population level, the mean values for Na, Ne, PPL, He and I were 1.393, 1.312, 39.27%, 0.119, and 0.186, respectively. The highest value of gene diversity within population (He) was found in the Lingga-1 population and the lowest value was found in the Rumbio population. The value of genetic differentiation among populations (GST) of E. apiculata is 0.284, consistent with the results of the AMOVA analysis which found that genetic variation among populations was 23.14%, indicates that the genetic variation of E. apiculata was more stored within populations than among populations. The gene flow (Nm) value of E. apiculata was 1.259 migrants per generation among populations. The Nm value of this species was high category, and could inhibit genetic differentiation among populations. The clustering of E. apiculata population based on the UPGMA dendrogram and PCA was inconsistent with its geographic distribution, reflecting the possibility that genes migration occurred between islands in the past. The main finding of this study was the genetic variation of the E. apiculata mostly stored within the population. Therefore, the population with the highest genetic diversity is a priority for in-situ conservation, and collection of E. apiculata genetic material for ex-situ conservation and breeding programs should be carried out minimum from Lingga-1 and Pokomo populations.


2014 ◽  
Vol 36 (2) ◽  
pp. 169 ◽  
Author(s):  
Maria J. Cardoso ◽  
Nick Mooney ◽  
Mark D. B. Eldridge ◽  
Karen B. Firestone ◽  
William B. Sherwin

The eastern quoll (Dasyurus viverrinus), while still relatively abundant in Tasmania, is now threatened by the recently introduced European red fox (Vulpes vulpes). Due to a lack of demographic information on eastern quolls, molecular data become a crucial surrogate to inform the management of the species. The aim of this study was to acquire baseline genetic data for use in current and future conservation strategies. Genetic variation, at seven microsatellite loci, was lower in Tasmanian eastern quolls than in quoll species from the Australian mainland. Within Tasmania, genetic variation was greater in central than peripheral populations, with the lowest levels detected on Bruny Island. Significant genetic population structure, consistent with regional differentiation, appears related to geographic distance among populations. Levels of gene flow appeared moderate, with genetic admixture greatest among central populations. Therefore, eastern quolls from genetically diverse central Tasmanian populations will become an important source for conservation initiatives if widespread declines begin to occur. Ongoing genetic monitoring of existing populations will allow conservation strategies to be adaptive. However, in order for translocations to be successful, managers must not only consider the genetic composition of founding individuals, but also habitat-specific adaptations, disease and threatening processes at translocation sites.


2020 ◽  
Vol 13 (3) ◽  
pp. 341-353
Author(s):  
Yuting Lin ◽  
Achyut Kumar Banerjee ◽  
Haidan Wu ◽  
Fengxiao Tan ◽  
Hui Feng ◽  
...  

Abstract Aims Pluchea indica is a mangrove-associate species, known for its medicinal properties in its native range and being invasive in part of its introduced range. This study aimed to assess geographic distribution of genetic variation of this species across its distribution range, identify the factors influencing its genetic structure and use this information to suggest conservation and management strategies in its native and introduced ranges, respectively. Methods We assessed the genetic diversity and population structure of 348 individuals from 31 populations across its native (Asia) and introduced (USA) ranges for 15 nuclear microsatellite loci. The spatial pattern of genetic variation was investigated at both large and regional spatial scales with the hypothesis that geographic distance and natural geographic barriers would influence the population structure with varying levels of differentiation across spatial scales. Important Findings We found relatively high genetic diversity at the population level and pronounced genetic differentiation in P. indica, as compared with the genetic diversity parameters of mangroves and mangrove associates in this region. Most of the populations showed heterozygote deficiency, primarily due to inbreeding and impediment of gene flow. Analysis of population structures at large spatial scale revealed the presence of two major clusters across the species’ natural range separating populations in China from those in Indonesia, Malaysia, Singapore, Thailand, Cambodia and Philippines, and that the USA population might have been introduced from the population cluster in China. Genetic differentiation between populations was also observed at the regional scale. A large number of populations showed evidence of genetic bottleneck, thereby emphasizing the risk of local extinction. Based on these findings, our study recommends in situ conservation strategies, such as to prioritize populations for conservation actions and to maintain genetic diversity.


Sign in / Sign up

Export Citation Format

Share Document