scholarly journals In silico construction of a multiepitope Zika virus vaccine using immunoinformatics tools

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Ana Clara Barbosa Antonelli ◽  
Vinnycius Pereira Almeida ◽  
Fernanda Oliveira Feitosa de Castro ◽  
Jacyelle Medeiros Silva ◽  
Irmtraut Araci Hoffmann Pfrimer ◽  
...  

AbstractZika virus (ZIKV) is an arbovirus from the Flaviviridae family and Flavivirus genus. Neurological events have been associated with ZIKV-infected individuals, such as Guillain-Barré syndrome, an autoimmune acute neuropathy that causes nerve demyelination and can induce paralysis. With the increase of ZIKV infection incidence in 2015, malformation and microcephaly cases in newborns have grown considerably, which suggested congenital transmission. Therefore, the development of an effective vaccine against ZIKV became an urgent need. Live attenuated vaccines present some theoretical risks for administration in pregnant women. Thus, we developed an in silico multiepitope vaccine against ZIKV. All structural and non-structural proteins were investigated using immunoinformatics tools designed for the prediction of CD4 + and CD8 + T cell epitopes. We selected 13 CD8 + and 12 CD4 + T cell epitopes considering parameters such as binding affinity to HLA class I and II molecules, promiscuity based on the number of different HLA alleles that bind to the epitopes, and immunogenicity. ZIKV Envelope protein domain III (EDIII) was added to the vaccine construct, creating a hybrid protein domain-multiepitope vaccine. Three high scoring continuous and two discontinuous B cell epitopes were found in EDIII. Aiming to increase the candidate vaccine antigenicity even further, we tested secondary and tertiary structures and physicochemical parameters of the vaccine conjugated to four different protein adjuvants: flagellin, 50S ribosomal protein L7/L12, heparin-binding hemagglutinin, or RS09 synthetic peptide. The addition of the flagellin adjuvant increased the vaccine's predicted antigenicity. In silico predictions revealed that the protein is a probable antigen, non-allergenic and predicted to be stable. The vaccine’s average population coverage is estimated to be 87.86%, which indicates it can be administered worldwide. Peripheral Blood Mononuclear Cells (PBMC) of individuals with previous ZIKV infection were tested for cytokine production in response to the pool of CD4 and CD8 ZIKV peptide selected. CD4 + and CD8 + T cells showed significant production of IFN-γ upon stimulation and IL-2 production was also detected by CD8 + T cells, which indicated the potential of our peptides to be recognized by specific T cells and induce immune response. In conclusion, we developed an in silico universal vaccine predicted to induce broad and high-coverage cellular and humoral immune responses against ZIKV, which can be a good candidate for posterior in vivo validation.

2020 ◽  
Vol 17 ◽  
Author(s):  
Mehreen Ismail ◽  
Zureesha Sajid ◽  
Amjad Ali ◽  
Xiaogang Wu ◽  
Syed Aun Muhammad ◽  
...  

Background: Human Papillomavirus (HPV) is responsible for substantial morbidity and mortality worldwide. We predicted immunogenic promiscuous monovalent and polyvalent T-cell epitopes from the polyprotein of the Human Papillomavirus (HPV) using a range of bioinformatics tools and servers. Methods: We used immunoinformatics and reverse vaccinology-based approaches to design prophylactic peptides by antigenicity analysis, Tcell epitopes prediction, proteasomal and conservancy evaluation, host-pathogen protein interactions, and in silico binding affinity analysis. Results: We found two early proteins (E2 and E6) and two late proteins (L1 and L2) of HPV as potential vaccine candidates. Of these proteins (E2, E6, L1 & L2), 2-epitopes of each candidate protein for multiple alleles of MHC class I and II bearing significant binding affinity (>-6.0 kcal/mole). These potential epitopes for CD4+ and CD8+ T-cells were also linked to design polyvalent construct using GPGPG linkers. Cholera toxin B and mycobacterial heparin-binding hemagglutinin adjuvant with a molecular weight of 12.5 and 18.5 kDa were used for epitopes of CD4+ and CD8+ T-cells respectively. The molecular docking indicated the optimum binding affinity of HPV peptides with MHC molecules. This interaction showed that our predicted vaccine candidates are suitable to trigger the host immune system to prevent HPV infections. Conclusion: The predicted conserved T-cell epitopes would contribute to the imminent design of HPV vaccine candidates, which will be able to induce a broad range of immune-responses in a heterogeneous HLA population.


2006 ◽  
Vol 81 (2) ◽  
pp. 934-944 ◽  
Author(s):  
Markus Cornberg ◽  
Brian S. Sheridan ◽  
Frances M. Saccoccio ◽  
Michael A. Brehm ◽  
Liisa K. Selin

ABSTRACT Live vaccinia virus (VV) vaccination has been highly successful in eradicating smallpox. However, the mechanisms of immunity involved in mediating this protective effect are still poorly understood, and the roles of CD8 T-cell responses in primary and secondary VV infections are not clearly identified. By applying the concept of molecular mimicry to identify potential CD8 T-cell epitopes that stimulate cross-reactive T cells specific to lymphocytic choriomeningitis virus (LCMV) and VV, we identified after screening only 115 peptides two VV-specific immunogenic epitopes that mediated protective immunity against VV. An immunodominant epitope, VV-e7r130, did not generate cross-reactive T-cell responses to LCMV, and a subdominant epitope, VV-a11r198, did generate cross-reactive responses to LCMV. Infection with VV induced strong epitope-specific responses which were stable into long-term memory and peaked at the time virus was cleared, consistent with CD8 T cells assisting in the control of VV. Two different approaches, direct adoptive transfer of VV-e7r-specific CD8 T cells and prior immunization with a VV-e7r-expressing ubiquitinated minigene, demonstrated that memory CD8 T cells alone could play a significant role in protective immunity against VV. These studies suggest that exploiting cross-reactive responses between viruses may be a useful tool to complement existing technology in predicting immunogenic epitopes to large viruses, such as VV, leading to a better understanding of the role CD8 T cells play during these viral infections.


2021 ◽  
Author(s):  
Blake Schouest ◽  
Alba Grifoni ◽  
John Pham ◽  
Jose Mateus ◽  
John Sydney ◽  
...  

The mosquito-borne Zika virus (ZIKV) spread rapidly into regions where dengue virus (DENV) is endemic, and flavivirus cross-reactive T cell responses have been observed repeatedly in animal models and in humans. Pre-existing cellular immunity to DENV is thought to contribute to protection in subsequent ZIKV infection, but the epitope targets of cross-reactive T cell responses have not been comprehensively identified. Using human blood samples from the DENV-endemic regions of Nicaragua and Sri Lanka that were collected before the global spread of ZIKV in 2016, we employed an in vitro expansion strategy to map ZIKV T cell epitopes in ZIKV-unexposed, DENV-seropositive donors. We identified 93 epitopes across the ZIKV proteome, and we observed patterns of immunodominance that were dependent on antigen size and sequence identity to DENV. We confirmed the immunogenicity of these epitopes through a computational HLA binding analysis, and we showed that cross-reactive T cells specifically recognize ZIKV peptides homologous to DENV sequences. We also found that these CD4 responses were derived from the memory T cell compartment. These data have implications for understanding the dynamics of flavivirus-specific T cell immunity in endemic areas. Importance Multiple flaviviruses, including Zika (ZIKV) and the four serotypes of dengue (DENV) viruses, are prevalent in the same large tropical and equatorial areas inhabited by hundreds of millions of people. The interplay of DENV and ZIKV infection is especially relevant, as these two viruses are endemic in largely overlapping regions, have significant sequence similarity, and share the same arthropod vector. Here, we define the targets of pre-existing immunity to ZIKV in unexposed subjects collected in dengue-endemic areas. We demonstrate that pre-existing immunity to DENV could shape ZIKV-specific responses, and DENV-ZIKV cross-reactive T cells can be expanded by stimulation with ZIKV peptides. The issue of potential ZIKV and DENV cross-reactivity is of relevance for understanding patterns of natural immunity, as well as for the development of diagnostic tests and vaccines.


2016 ◽  
Vol 9 (9) ◽  
pp. 844-850 ◽  
Author(s):  
Hamza Dar ◽  
Tahreem Zaheer ◽  
Muhammad Talha Rehman ◽  
Amjad Ali ◽  
Aneela Javed ◽  
...  

2020 ◽  
Vol 217 (9) ◽  
Author(s):  
Dong Chen ◽  
Zhiliang Duan ◽  
Wenhua Zhou ◽  
Weiwei Zou ◽  
Shengwei Jin ◽  
...  

Cross-reactive anti-flaviviral immunity can influence the outcome of infections with heterologous flaviviruses. However, it is unclear how the interplay between cross-reactive antibodies and T cells tilts the balance toward pathogenesis versus protection during secondary Zika virus (ZIKV) and Japanese encephalitis virus (JEV) infections. We show that sera and IgG from JEV-vaccinated humans and JEV-inoculated mice cross-reacted with ZIKV, exacerbated lethal ZIKV infection upon transfer to mice, and promoted viral replication and mortality upon ZIKV infection of the neonates born to immune mothers. In contrast, transfer of CD8+ T cells from JEV-exposed mice was protective, reducing the viral burden and mortality of ZIKV-infected mice and abrogating the lethal effects of antibody-mediated enhancement of ZIKV infection in mice. Conversely, cross-reactive anti-ZIKV antibodies or CD8+ T cells displayed the same pathogenic or protective effects upon JEV infection, with the exception that maternally acquired anti-ZIKV antibodies had no effect on JEV infection of the neonates. These results provide clues for developing safe anti-JEV/ZIKV vaccines.


2016 ◽  
Vol 34 (4) ◽  
pp. 396-409 ◽  
Author(s):  
Katja Nitschke ◽  
Hendrik Luxenburger ◽  
Muthamia M. Kiraithe ◽  
Robert Thimme ◽  
Christoph Neumann-Haefelin

Approximately 500 million people are chronically infected with the hepatitis B virus (HBV) or hepatitis C virus (HCV) worldwide and are thus at high risk of progressive liver disease, leading to liver fibrosis, cirrhosis and ultimately hepatocellular cancer. Virus-specific CD8+ T-cells play a major role in viral clearance in >90% of adult patients who clear HBV and in approximately 30% of patients who clear HCV in acute infection. However, several mechanisms contribute to the failure of the adaptive CD8+ T-cell response in those patients who progress to chronic infection. These include viral mutations leading to escape from the CD8+ T-cell response as well as exhaustion and dysfunction of virus-specific CD8+ T-cells. Antiviral efficacy of the virus-specific CD8+ T-cell response also strongly depends on its restriction by specific human leukocyte antigens (HLA) class I alleles. Our review will summarize the role of HLA-A, B and C-restricted CD8+ T-cells in HBV and HCV infection. Due to the current lack of a comprehensive database of HBV- and HCV-specific CD8+ T-cell epitopes, we also provide a summary of the repertoire of currently well-described HBV- and HCV-specific CD8+ T-cell epitopes. A better understanding of the factors that contribute to the success or failure of virus-specific CD8+ T-cells may help to develop new therapeutic options for HBV eradication in patients with chronic HBV infection (therapeutic vaccination and/or immunomodulation) as well as a prophylactic vaccine against HCV infection.


2008 ◽  
Vol 2 (9) ◽  
pp. e288 ◽  
Author(s):  
María G. Alvarez ◽  
Miriam Postan ◽  
D. Brent Weatherly ◽  
María C. Albareda ◽  
John Sidney ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Alexander Hellesen ◽  
Sigrid Aslaksen ◽  
Lars Breivik ◽  
Ellen Christine Røyrvik ◽  
Øyvind Bruserud ◽  
...  

ObjectivesCD8+ T cells targeting 21-hydroxylase (21OH) are presumed to play a central role in the destruction of adrenocortical cells in autoimmune Addison’s disease (AAD). Earlier reports have suggested two immunodominant CD8+ T cell epitopes within 21OH: LLNATIAEV (21OH342-350), restricted by HLA-A2, and EPLARLEL (21OH431-438), restricted by HLA-B8. We aimed to characterize polyclonal CD8+ T cell responses to the proposed epitopes in a larger patient cohort with AAD.MethodsRecombinant fluorescent HLA-peptide multimer reagents were used to quantify antigen-specific CD8+ T cells by flow cytometry. Interferon-gamma (IFNγ) Elispot and biochemical assays were used to functionally investigate the 21OH-specific T cells, and to map the exactly defined epitopes of 21OH.ResultsWe found a significantly higher frequency of HLA-A2 restricted LLNATIAEV-specific cells in patients with AAD than in controls. These cells could also be expanded in vitro in an antigen specific manner and displayed a robust antigen-specific IFNγ production. In contrast, only negligible frequencies of EPLARLEL-specific T cells were detected in both patients and controls with limited IFNγ response. However, significant IFNγ production was observed in response to a longer peptide encompassing EPLARLEL, 21OH430-447, suggesting alternative dominant epitopes. Accordingly, we discovered that the slightly offset ARLELFVVL (21OH434-442) peptide is a novel dominant epitope restricted by HLA-C7 and not by HLA-B8 as initially postulated.ConclusionWe have identified two dominant 21OH epitopes targeted by CD8+ T cells in AAD, restricted by HLA-A2 and HLA-C7, respectively. To our knowledge, this is the first HLA-C7 restricted epitope described for an autoimmune disease.


EBioMedicine ◽  
2021 ◽  
Vol 72 ◽  
pp. 103610
Author(s):  
Isaac Quiros-Fernandez ◽  
Mansour Poorebrahim ◽  
Elham Fakhr ◽  
Angel Cid-Arregui
Keyword(s):  
T Cells ◽  
T Cell ◽  

2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e15211-e15211
Author(s):  
Lauren Virginia Wood ◽  
Siva K Gandhapudi ◽  
Karuna Sundarapandiyan ◽  
Frank K Bedu-Addo ◽  
Gregory Conn ◽  
...  

e15211 Background: Immunotherapy approaches are limited in their ability to induce antigen-specific CD8+ T cells in vivo able to recognize and kill tumor cells. We developed a novel immunotherapy approach using enantiomerically pure, R-DOTAP cationic lipid nanoparticles and tumor-derived T cell antigens, and previously demonstrated that R-DOTAP formulations efficiently prime cytotoxic T cells through enhanced cross presentation and induction of type I interferons.[1] A phase I clinical trial of a R-DOTAP HPV16 peptide formulation confirmed induction of strong in vivo HPV-specific CD8+ cytolytic T-cells without associated systemic toxicities. In this study, we assessed R-DOTAP nanoparticle formulations containing whole protein (ovalbumin) or long multi-epitope peptides from the tumor antigen TARP (T-cell alternate reading frame protein): a 58-residue protein overexpressed in prostate and breast cancers, documented to be immunogenic in humans. Methods: R-DOTAP formulations were prepared containing ovalbumin (OVA) or TARP peptides. C57BL/6K mice were immunized with 10 μg/mouse of OVA plus R-DOTAP, CFA or sucrose on Days 0, 15 and 30. OVA-specific cellular and humoral responses following vaccination were assessed by measuring splenic CD4 and CD8 T cell IFN-γ production and circulating OVA-specific antibodies in serum. HLA-A2 transgenic mice (AAD mice) were vaccinated with long, multi-epitope TARP peptides delivered as an R-DOTAP admixture or with CFA or sucrose on Days 0 and 7. Antigen-specific T cell responses were measured by IFN-γ ELISpot assay. Results: OVA R-DOTAP formulations induced strong antigen-specific effector CD4 and CD8 immune and memory responses detected 7 and 30 days, respectively, following vaccination as well as OVA-specific antibody responses. In TARP peptide vaccinated mice, R-DOTAP formulations were able to present multiple CD8 T cell epitopes and stimulate responses that were superior to CFA. Conclusions: Our results suggest that R-DOTAP is a versatile immune activating therapy that can be formulated with long, multi-epitope tumor-derived peptides or whole proteins. R-DOTAP formulations induce quantitatively robust antigen-specific CD4 and CD8 T cells in vivo compared to well-established immune stimulants. Reference: 1.Gandhapudi SK, Ward M, Bush JP et al. Antigen Priming with Enantiospecific Cationic Lipid Nanoparticles Induces Potent Antitumor CTL Responses through Novel Induction of a Type I IFN Response. J Immunol 2019;202:3524-3536


Sign in / Sign up

Export Citation Format

Share Document