scholarly journals KIAA0319 influences cilia length, cell migration and mechanical cell–substrate interaction

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Rebeca Diaz ◽  
Nils M. Kronenberg ◽  
Angela Martinelli ◽  
Philipp Liehm ◽  
Andrew C. Riches ◽  
...  

AbstractFollowing its association with dyslexia in multiple genetic studies, the KIAA0319 gene has been extensively investigated in different animal models but its function in neurodevelopment remains poorly understood. We developed the first human cellular knockout model for KIAA0319 in RPE1 retinal pigment epithelia cells via CRISPR-Cas9n to investigate its role in processes suggested but not confirmed in previous studies, including cilia formation and cell migration. We observed in the KIAA0319 knockout increased cilia length and accelerated cell migration. Using Elastic Resonator Interference Stress Microscopy (ERISM), we detected an increase in cellular force for the knockout cells that was restored by a rescue experiment. Combining ERISM and immunostaining we show that RPE1 cells exert highly dynamic, piconewton vertical pushing forces through actin-rich protrusions that are surrounded by vinculin-rich pulling sites. This protein arrangement and force pattern has previously been associated to podosomes in other cells. KIAA0319 depletion reduces the fraction of cells forming these actin-rich protrusions. Our results suggest an involvement of KIAA0319 in cilia biology and cell–substrate force regulation.

2019 ◽  
Author(s):  
Rebeca Diaz ◽  
Nils Michael Kronenberg ◽  
Angela Martinelli ◽  
Philipp Liehm ◽  
Andrew Clive Riches ◽  
...  

Following its association with dyslexia in multiple genetic studies, the KIAA0319 gene has been extensively investigated in different animal models but its function in neurodevelopment remains poorly understood. We developed the first cellular knockout model for KIAA0319 via CRISPR-Cas9n to investigate its role in processes suggested but not confirmed in previous studies, including cilia formation and cell migration. We found that KIAA0319 knockout increased cilia length and accelerated cell migration. Using Elastic Resonator Interference Stress Microscopy (ERISM), we detected an increase in cellular force for the knockout cells that was restored by a rescue experiment. Combining ERISM and immunostaining we show that KIAA0319 depletion reduces the number of podosomes formed by the cells. Our results suggest an involvement of KIAA0319 in cilia biology and force regulation and show for the first time that podosomes exert highly dynamic, piconewton vertical forces in epithelial cells.


2012 ◽  
Vol 2012.24 (0) ◽  
pp. _8C24-1_-_8C24-2_
Author(s):  
Hiromi MIYOSHI ◽  
Jungmyoung JU ◽  
Sang Min LEE ◽  
Dong Jin CHO ◽  
Jong Soo KO ◽  
...  

2016 ◽  
Vol 4 (1) ◽  
pp. 1500865 ◽  
Author(s):  
Tanchen Ren ◽  
Yelin Ni ◽  
Wang Du ◽  
Shan Yu ◽  
Zhengwei Mao ◽  
...  

2019 ◽  
Vol 316 (6) ◽  
pp. C782-C791 ◽  
Author(s):  
Zhi-Peng You ◽  
Shan-Shan Chen ◽  
Zhong-Yi Yang ◽  
Shu-Rong Li ◽  
Fan Xiong ◽  
...  

Cell permeability and epithelial-mesenchymal transition (EMT) were found to be enhanced in diabetic retinopathy, and the aim of this study was to investigate the underlying mechanism. ARPE-19 cell line or primary retinal pigment epithelial (RPE) cells were cultured under high or normal glucose conditions. Specific shRNAs were employed to knock down ADP-ribosylation factor 6 (ARF6), GEP100, or VEGF receptor 2 (VEGFR2) in ARPE-19 or primary RPE cells. Cell migration ability was measured using Transwell assay. Western blotting was used to measure indicated protein levels. RPE cells treated with high glucose showed increased cell migration, paracellular permeability, EMT, and expression of VEGF. Knockdown of VEGFR2 inhibited the high-glucose-induced effects on RPE cells via inactivation of ARF6 and MAPK pathways. Knockdown ARF6 or GEP100 led to inhibition of high-glucose-induced effects via inactivation of VEGFR2 pathway. Knockdown of ARF6, but not GEP100, decreased high-glucose-induced internalization of VEGFR2. High-glucose enhances EMT and cell permeability of RPE cells through activation of VEGFR2 and ARF6/GEP100 pathways, which form a positive feedback loop to maximize the activation of VEGF/VEGFR2 signaling.


1995 ◽  
Vol 73 (9-10) ◽  
pp. 709-722 ◽  
Author(s):  
Vitauts. I. Kalnins ◽  
Martin Sandig ◽  
Greg J. Hergott ◽  
Haruhiko Nagai

Several systems of microfilaments (MF) associated with adherens-type junctions between adjacent retinal pigment epithelial (RPE) cells and between these cells and the substratum play an important role in maintaining the integrity and organization of the RPE. They include prominent, contractile circumferential MF bundles that are associated with the zonula adherens (ZA) junctions. In chick RPE, these junctions are assembled from smaller subunits thus giving greater structural flexibility to the junctional region. Because the separation of the junctions requires trypsin and low calcium, both calcium-dependent and -independent mechanisms are involved in keeping adjacent RPE cells attached to one another. Another system of MF bundles that crosses the cell at the level of ZA junctions can be induced to form by stretching the epithelium. The MF bundles forming this system are oriented in the direction in which the RPE is stretched, thereby preventing the overextension of the cell in any one direction. The system may be useful as an indicator of the direction in which tension is experienced by RPE during development of the eye, in animal models of disease and during repair of experimentally induced wounds. Numerous single-cell wounds resulting from death of RPE cells by apoptosis at various stages of repair are normally present in developing chick and adult mammalian RPE. These wounds are repaired by the spreading of adjacent RPE cells and by the contraction of MF bundles oriented parallel to the wound edge, which develop during this time. As a result of the spreading in the absence of cell proliferation, the RPE cells increase in diameter with age. Experimentally induced wounds made by removing 5–10 RPE cells are repaired by a similar mechanism within 24 h. In repair of larger wounds, over 125 μm in width, the MF bundles oriented parallel to the wound edge characteristic of spreading cells are later replaced by stress fibers (SFs) that run perpendicularly to the wound edge and interact with the substratum at focal contacts (FCs) as RPE cells start to migrate. Cell proliferation is induced in cells along the wound edge only when the wounds are wide enough to require cell migration. In the presence of antibodies to beta-1-integrins, a component of FCs, cell spreading is not prevented but both cell migration and cell proliferation are inhibited. Thus, only the organization of the cytoskeleton characteristic of migrating RPE cells that have SFs that interact with the substratum at FCs, is associated with the induction of cell proliferation.Key words: retinal pigment epithelium, microfilaments, wound repair.


2002 ◽  
Vol 158 (6) ◽  
pp. 1133-1144 ◽  
Author(s):  
Paola Spessotto ◽  
Francesca Maria Rossi ◽  
Massimo Degan ◽  
Raffaele Di Francia ◽  
Roberto Perris ◽  
...  

Osteoclast (OC) precursors migrate to putative sites of bone resorption to form functionally active, multinucleated cells. The preOC FLG 29.1 cells, known to be capable of irreversibly differentiating into multinucleated OC-like cells, displayed several features of primary OCs, including expression of specific integrins and the hyaluronan (HA) receptor CD44. OC-like FLG 29.1 cells adhered to and extensively migrated through membranes coated with fibronectin, vitronectin, and laminins, but, although strongly binding to HA, totally failed to move on this substrate. Moreover, soluble HA strongly inhibited OC-like FLG 29.1 cell migration on the permissive matrix substrates, and this behavior was dependent on its engagement with CD44, as it was fully restored by function-blocking anti-CD44 antibodies. HA did not modulate the cell–substrate binding affinity/avidity nor the expression levels of the corresponding integrins. MMP-9 was the major secreted metalloproteinase used by OC-like FLG 29.1 cells for migration, because this process was strongly inhibited by both TIMP-1 and GM6001, as well as by MMP-9–specific antisense oligonucleotides. After HA binding to CD44, a strong down-regulation of MMP-9 mRNA and protein was detected. These findings highlight a novel role of the HA–CD44 interaction in the context of OC-like cell motility, suggesting that it may act as a stop signal for bone-resorbing cells.


2017 ◽  
Vol 112 (3) ◽  
pp. 434a-435a ◽  
Author(s):  
Jennifer Chen ◽  
Lynn Penn ◽  
Ning Xi ◽  
Jun Xi

Author(s):  
Henry C. Wong ◽  
William C. Tang

Biological tissues are composed of cells that adhere to the extracellular matrix (ECM) via cell-surface integrin receptors that bind to specific proteins, such as fibronectin, embedded in the matrix. In this manner, the ECM functions as a structural support for the attached cells, and mechanical forces are able to be transmitted from the cell to the ECM and vice versa [1]. Cell migration, a process that is highly dependent on these mechanical interactions, is important for many normal biological processes and diseases that occur in the human body, which include embryonic development, immune response, would healing, and cancer invasion [2]. Though many continuum models of cell migration have been proposed, there is still a need for a model that can be used to quantitatively understand the mechanical factors that can influence the movement of a cell on a substrate. This would be invaluable to the research areas of tissue engineering as well as cancer metastasis. We utilized a finite element model to elucidate the mechanism of cell-substrate interactions for a cell that consistently migrates in a single direction. Our model follows the approach taken by Gracheva and Othmer [2], but we extended their model to describe two-dimensional plane strain behavior.


2020 ◽  
Vol 21 (8) ◽  
pp. 2719 ◽  
Author(s):  
Céline Koster ◽  
Kimberley E. Wever ◽  
Philip E. Wagstaff ◽  
Koen T. van den Hurk ◽  
Carlijn R. Hooijmans ◽  
...  

The retinal pigment epithelium (RPE) and the adjacent light-sensitive photoreceptors form a single functional unit lining the back of the eye. Both cell layers are essential for normal vision. RPE degeneration is usually followed by photoreceptor degeneration and vice versa. There are currently almost no effective therapies available for RPE disorders such as Stargardt disease, specific types of retinitis pigmentosa, and age-related macular degeneration. RPE replacement for these disorders, especially in later stages of the disease, may be one of the most promising future therapies. There is, however, no consensus regarding the optimal RPE source, delivery strategy, or the optimal experimental host in which to test RPE replacement therapy. Multiple RPE sources, delivery methods, and recipient animal models have been investigated, with variable results. So far, a systematic evaluation of the (variables influencing) efficacy of experimental RPE replacement parameters is lacking. Here we investigate the effect of RPE transplantation on vision and vision-based behavior in animal models of retinal degenerated diseases. In addition, we aim to explore the effect of RPE source used for transplantation, the method of intervention, and the animal model which is used. Methods: In this study, we systematically identified all publications concerning transplantation of RPE in experimental animal models targeting the improvement of vision (e.g., outcome measurements related to the morphology or function of the eye). A variety of characteristics, such as species, gender, and age of the animals but also cell type, number of cells, and other intervention characteristics were extracted from all studies. A risk of bias analysis was performed as well. Subsequently, all references describing one of the following outcomes were analyzed in depth in this systematic review: a-, b-, and c-wave amplitudes, vision-based, thickness analyses based on optical coherence tomography (OCT) data, and transplant survival based on scanning laser ophthalmoscopy (SLO) data. Meta-analyses were performed on the a- and b-wave amplitudes from electroretinography (ERG) data as well as data from vision-based behavioral assays. Results: original research articles met the inclusion criteria after two screening rounds. Overall, most studies were categorized as unclear regarding the risk of bias, because many experimental details were poorly reported. Twenty-three studies reporting one or more of the outcome measures of interest were eligible for either descriptive (thickness analyses based on OCT data; n = 2) or meta-analyses. RPE transplantation significantly increased ERG a-wave (Hedges’ g 1.181 (0.471–1.892), n = 6) and b-wave (Hedges’ g 1.734 (1.295–2.172), n = 42) amplitudes and improved vision-based behavior (Hedges’ g 1.018 (0.826–1.209), n = 96). Subgroup analyses revealed a significantly increased effect of the use of young and adolescent animals compared to adult animals. Moreover, transplanting more cells (in the range of 105 versus in the range of 104) resulted in a significantly increased effect on vision-based behavior as well. The origin of cells mattered as well. A significantly increased effect was found on vision-based behavior when using ARPE-19 and OpRegen® RPE. Conclusions: This systematic review shows that RPE transplantation in animal models for retinal degeneration significantly increases a- and b- wave amplitudes and improves vision-related behavior. These effects appear to be more pronounced in young animals, when the number of transplanted cells is larger and when ARPE-19 and OpRegen® RPE cells are used. We further emphasize that there is an urgent need for improving the reporting and methodological quality of animal experiments, to make such studies more comparable.


Sign in / Sign up

Export Citation Format

Share Document