scholarly journals Antibiotic resistance plasmid composition and architecture in Escherichia coli isolates from meat

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tania S. Darphorn ◽  
Keshia Bel ◽  
Belinda B. Koenders-van Sint Anneland ◽  
Stanley Brul ◽  
Benno H. Ter Kuile

AbstractResistance plasmids play a crucial role in the transfer of antimicrobial resistance from the veterinary sector to human healthcare. In this study plasmids from foodborne Escherichia coli isolates with a known (ES)BL or tetracycline resistance were sequenced entirely with short- and long-read technologies to obtain insight into their composition and to identify driving factors for spreading. Resistant foodborne E. coli isolates often contained several plasmids coding for resistance to various antimicrobials. Most plasmids were large and contained multiple resistance genes in addition to the selected resistance gene. The majority of plasmids belonged to the IncI, IncF and IncX incompatibility groups. Conserved and variable regions could be distinguished in each of the plasmid groups. Clusters containing resistance genes were located in the variable regions. Tetracycline and (extended spectrum) beta-lactamase resistance genes were each situated in separate clusters, but sulphonamide, macrolide and aminoglycoside formed one cluster and lincosamide and aminoglycoside another. In most plasmids, addiction systems were found to maintain presence in the cell.

2021 ◽  
Vol 12 (1) ◽  
pp. 123-137
Author(s):  
Carolina Sabença ◽  
Gilberto Igrejas ◽  
Patrícia Poeta ◽  
Frédéric Robin ◽  
Richard Bonnet ◽  
...  

Objectives. Epidemiological data concerning third-generation cephalosporin (3GC) resistance in wild fauna are scarce. The aim of this study was to characterize the resistance genes, their genetic context, and clonal relatedness in 17 Escherichia coli resistant to 3GC isolated from wild animals. Methods. The isolates were characterized by short-read whole genome sequencing, and long-read sequencing was used for the hybrid assembly of plasmid sequences. Results. The 3GC resistance gene most identified in the isolates was the extended-spectrum β-lactamases (ESBL)-encoding gene blaCTX-M-1 (82.3%), followed by blaCTX-M-32 (5.9%), blaCTX-M-14 (5.9%), and blaSHV-12 (5.9%). E. coli isolates mainly belonged to the sequence types (STs) rarely reported from humans. The single nucleotide polymorphism (SNP)-based typing showed that most E. coli genomes from wild animals (wild boars, birds of prey, and buzzards) formed clonal clusters (<5 SNPs), showing a clonal dissemination crossing species boundaries. blaCTX-M-1-harboring IncI1-ST3 plasmid was the predominant ESBL-encoding plasmid (76.4%) in wild animal isolates. Plasmid comparison revealed a 110-kb self-transferable plasmid consisting of a conserved backbone and two variable regions involved in antimicrobial resistance and in interaction with recipient cells during conjugation. Conclusion. Our results highlighted the unexpected clonal dissemination of blaCTX-M-1-encoding clones and the complicity of IncI1-ST3 plasmid in the spread of blaCTX-M-1 within wild fauna.


2015 ◽  
Vol 81 (16) ◽  
pp. 5560-5566 ◽  
Author(s):  
Seung Won Shin ◽  
Min Kyoung Shin ◽  
Myunghwan Jung ◽  
Kuastros Mekonnen Belaynehe ◽  
Han Sang Yoo

ABSTRACTThe aim of this study was to investigate the prevalence and transferability of resistance in tetracycline-resistantEscherichia coliisolates recovered from beef cattle in South Korea. A total of 155E. coliisolates were collected from feces in South Korea, and 146 were confirmed to be resistant to tetracycline. The tetracycline resistance genetet(A) (46.5%) was the most prevalent, followed bytet(B) (45.1%) andtet(C) (5.8%). Strains carryingtet(A) plustet(B) andtet(B) plustet(C) were detected in two isolates each. In terms of phylogenetic grouping, 101 (65.2%) isolates were classified as phylogenetic group B1, followed in decreasing order by D (17.4%), A (14.2%), and B2 (3.2%). Ninety-one (62.3%) isolates were determined to be multidrug resistant by the disk diffusion method. MIC testing using the principal tetracyclines, namely, tetracycline, chlortetracycline, oxytetracycline, doxycycline, and minocycline, revealed that isolates carryingtet(B) had higher MIC values than isolates carryingtet(A). Conjugation assays showed that 121 (82.9%) isolates could transfer a tetracycline resistance gene to a recipient via the IncFIB replicon (65.1%). This study suggests that the high prevalence of tetracycline-resistantE. coliisolates in beef cattle is due to the transferability of tetracycline resistance genes betweenE. colipopulations which have survived the selective pressure caused by the use of antimicrobial agents.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wei Zhou ◽  
Enbao Zhang ◽  
Jinzhi Zhou ◽  
Ze He ◽  
Yuqiao Zhou ◽  
...  

This research aimed to investigate the presence and transferability of the extended-spectrum β-lactamase resistance genes to identify the genetic context of multi-drug resistant (MDR) loci in two Escherichia coli plasmids from livestock and poultry breeding environment. MICs were determined by broth microdilution. A total of 137 E. coli resistant to extended-spectrum β-lactam antibiotics were screened for the presence of the ESBL genes by PCR. Only two E. coli out of 206 strains produced carbapenemases, including strain 11011 that produced enzyme A, and strain 417957 that produced enzyme B. The genes were blaKPC and blaNDM, respectively. The plasmids containing blaCTX–M were conjugatable, and the plasmids containing carbapenem resistance gene were not conjugatable. Six extended-spectrum β-lactamase resistance genes were detected in this research, including blaTEM, blaCTX–M, blaSHV, blaOAX–1, blaKPC, and blaNDM, and the detection rates were 94.89% (130/137), 92.7% (127/137), 24.81% (34/137), 20.43% (28/137), 0.72% (1/137), and 0.72% (1/137), respectively. Two conjugative lncFII multi-resistance plasmids carrying blaCTX–M, p11011-fosA and p417957-CTXM, were sequenced and analyzed. Both conjugative plasmids were larger than 100 kb and contained three accessory modules, including MDR region. The MDR region of the two plasmids contained many antibiotic resistance genes, including blaCTX–M, mph (A), dfrA17, aadA5, sul1, etc. After transfer, both the transconjugants displayed elevated MICs of the respective antimicrobial agents. A large number of resistance genes clusters in specific regions may contribute to the MDR profile of the strains. The presence of mobile genetic elements at the boundaries can possibly facilitate transfer among Enterobacteriaceae through inter-replicon gene transfer. Our study provides beta-lactam resistance profile of bacteria, reveals the prevalence of β-lactamase resistance genes in livestock and poultry breeding environment in Zhejiang Province, and enriches the research on IncFII plasmids containing blaCTX–M.


2020 ◽  
Vol 2 (7A) ◽  
Author(s):  
Ebenezer Foster-Nyarko ◽  
Nabil-Fareed Alikhan ◽  
Anuradha Ravi ◽  
Gaëtan Thilliez ◽  
Nicholas Thomson ◽  
...  

Increasing contact between humans and non-human primates provides an opportunity for the transfer of potential pathogens or antimicrobial resistance between different host species. We have investigated genetic diversity and antimicrobial resistance in Escherichia coli isolates from a range of non-human primates dispersed across the Gambia: patas monkey (n=1), western colobus monkey (n=6), green monkey (n=14) and guinea baboon (n=22). From 43 stools, we recovered 99 isolates. We performed Illumina whole-genome shotgun sequencing on all isolates and nanopore long-read sequencing on isolates with antimicrobial resistance genes. We inferred the evolution of E. coli in this population using the EnteroBase software environment. We identified 43 sequence types (ten of them novel), spanning five of the eight known phylogroups of E. coli. Many of the observed sequence types and phylotypes from non-human primates have been associated with human extra-intestinal infection and carry virulence characteristics associated with disease in humans, particularly ST73, ST217 and ST681. However, we found a low prevalence of antimicrobial resistance genes in isolates from non-human primates. Hierarchical clustering showed that ST442 and ST349 from non-human primates are closely related to isolates from human infections, suggesting recent exchange of bacteria between humans and monkeys. Our results are of public health importance, considering the increasing contact between humans and wild primates.


2021 ◽  
Vol 9 (8) ◽  
pp. 1613
Author(s):  
Julian A. Paganini ◽  
Nienke L. Plantinga ◽  
Sergio Arredondo-Alonso ◽  
Rob J. L. Willems ◽  
Anita C. Schürch

The incidence of infections caused by multidrug-resistant E. coli strains has risen in the past years. Antibiotic resistance in E. coli is often mediated by acquisition and maintenance of plasmids. The study of E. coli plasmid epidemiology and genomics often requires long-read sequencing information, but recently a number of tools that allow plasmid prediction from short-read data have been developed. Here, we reviewed 25 available plasmid prediction tools and categorized them into binary plasmid/chromosome classification tools and plasmid reconstruction tools. We benchmarked six tools (MOB-suite, plasmidSPAdes, gplas, FishingForPlasmids, HyAsP and SCAPP) that aim to reliably reconstruct distinct plasmids, with a special focus on plasmids carrying antibiotic resistance genes (ARGs) such as extended-spectrum beta-lactamase genes. We found that two thirds (n = 425, 66.3%) of all plasmids were correctly reconstructed by at least one of the six tools, with a range of 92 (14.58%) to 317 (50.23%) correctly predicted plasmids. However, the majority of plasmids that carried antibiotic resistance genes (n = 85, 57.8%) could not be completely recovered as distinct plasmids by any of the tools. MOB-suite was the only tool that was able to correctly reconstruct the majority of plasmids (n = 317, 50.23%), and performed best at reconstructing large plasmids (n = 166, 46.37%) and ARG-plasmids (n = 41, 27.9%), but predictions frequently contained chromosome contamination (40%). In contrast, plasmidSPAdes reconstructed the highest fraction of plasmids smaller than 18 kbp (n = 168, 61.54%). Large ARG-plasmids, however, were frequently merged with sequences derived from distinct replicons. Available bioinformatic tools can provide valuable insight into E. coli plasmids, but also have important limitations. This work will serve as a guideline for selecting the most appropriate plasmid reconstruction tool for studies focusing on E. coli plasmids in the absence of long-read sequencing data.


2021 ◽  
Author(s):  
Julian A. Paganini ◽  
Nienke L. Plantinga ◽  
Sergio Arredondo-Alonso ◽  
Rob J.L. Willems ◽  
Anita C. Schurch

The incidence of infections caused by multidrug-resistant Escherichia coli strains has risen in the past years. Antibiotic resistance in E. coli is often mediated by acquisition and maintenance of plasmids. The study of E. coli plasmid epidemiology and genomics often requires long-read sequencing information, but recently a number of tools that allow plasmid prediction from short-read data have been developed. Here, we reviewed 25 available plasmid prediction tools and categorized them into binary plasmid/chromosome classification tools and plasmid reconstruction tools. We benchmarked six tools that aim to reliably reconstruct distinct plasmids, with a special focus on plasmids carrying antibiotic resistance genes (ARGs) such as extended-spectrum beta-lactamase genes. They use either assembly graph information (plasmidSPAdes, gplas), reference databases (MOB-Suite, FishingForPlasmids) or both (HyAsP and SCAPP) to produce plasmid predictions. The benchmark data set consisted of 240 E. coli strains, harboring 631 plasmids, which were representative for the diversity of E. coli in public databases. Notably, these strains were not used for training any of the tools. We found that two thirds (n=425, 66.3.%) of all plasmids were correctly reconstructed by at least one of the six tools, with a range of 92 (14.58%) to 317 (50.23%) correctly predicted plasmids. However, the majority of plasmids that carried antibiotic resistance genes (n=85, 57.8%) could not be completely recovered as distinct plasmids by any of the tools. MOB-suite was the only tool that was able to correctly reconstruct the majority of plasmids (n=317, 50.23%), and performed best at reconstructing large plasmids (n=166, 46.37%) and ARG-plasmids (n=41, 27.9%), but predictions frequently contained chromosome contamination (40%). In contrast, plasmidSPAdes reconstructed the highest fraction of plasmids smaller than 18 kbp (n=168, 61.54%). Large ARG-plasmids, however, were recovered with small precision values (median=0.47, IQR=0.61), indicating that plasmidSPAdes frequently merged sequences derived from distinct replicons. Additionally, only 63% of all plasmid-borne ARGs were correctly predicted by plasmidSPAdes. The remaining four tools (FishingForPlasmids, HyAsP, SCAPP and gplas) were able to correctly reconstruct a combined total of 18 plasmids that were missed by MOB-suite and plasmidSPAdes. Available bioinformatic tools can provide valuable insight into E. coli plasmids, but also have important limitations. This work will serve as a guideline for selecting the most appropriate plasmid reconstruction tool for studies focusing on E. coli plasmids in the absence of long-read sequencing data.


2004 ◽  
Vol 70 (4) ◽  
pp. 2503-2507 ◽  
Author(s):  
Andrew Bryan ◽  
Nir Shapir ◽  
Michael J. Sadowsky

ABSTRACT Nonselected and natural populations of Escherichia coli from 12 animal sources and humans were examined for the presence and types of 14 tetracycline resistance determinants. Of 1,263 unique E. coli isolates from humans, pigs, chickens, turkeys, sheep, cows, goats, cats, dogs, horses, geese, ducks, and deer, 31% were highly resistant to tetracycline. More than 78, 47, and 41% of the E. coli isolates from pigs, chickens, and turkeys were resistant or highly resistant to tetracycline, respectively. Tetracycline MICs for 61, 29, and 29% of E. coli isolates from pig, chickens, and turkeys, respectively, were ≥233 μg/ml. Muliplex PCR analyses indicated that 97% of these strains contained at least 1 of 14 tetracycline resistance genes [tetA, tetB, tetC, tetD, tetE, tetG, tetK, tetL, tetM, tetO, tetS, tetA(P), tetQ, and tetX] examined. While the most common genes found in these isolates were tetB (63%) and tetA (35%), tetC, tetD, and tetM were also found. E. coli isolates from pigs and chickens were the only strains to have tetM. To our knowledge, this represents the first report of tetM in E. coli.


2020 ◽  
Author(s):  
Antoni P.A. Hendrickx ◽  
Fabian Landman ◽  
Angela de Haan ◽  
Dyogo Borst ◽  
Sandra Witteveen ◽  
...  

AbstractCarbapenem-hydrolyzing enzymes belonging to the OXA-48-like group are encoded by blaOXA-48-like alleles and are abundant among Enterobacterales in the Netherlands. Therefore, the objective was to investigate the characteristics, gene content, and diversity of the blaOXA-48-like carrying plasmids and chromosomes of Escherichia coli and Klebsiella pneumoniae collected in the Dutch national surveillance from 2014-2019 in comparison with genome sequences retrieved from 29 countries. By combining short-read and long-read sequencing, 47 and 132 complete blaOXA-48-like plasmids were reconstructed for E. coli and K. pneumoniae, respectively. Distinct plasmid groups designated as pOXA-48, pOXA-181, and pOXA-232 were identified in the Netherlands and varied in size, % G+C, presence of antibiotic resistance genes, replicons and gene content. The pOXA-48 plasmids were variable, while pOXA-181 and pOXA-232 plasmids were conserved. A group of non-related pOXA-48 plasmids contained different resistance genes, non-IncL type replicons or carried no replicons. K. pneumoniae isolates carrying blaOXA-48 or blaOXA-232 were mostly resistant, while E. coli blaOXA-48, blaOXA-181 and chromosomal blaOXA-48 or blaOXA-244 isolates were mostly sensitive for meropenem. Analysis of chromosomally localized blaOXA-48-like alleles revealed that these were flanked by a direct repeat (DR) upstream of IS1R, which were found at multiple locations in the chromosome of distinct genetic backgrounds. In conclusion, the overall blaOXA-48-like plasmid population in the Netherlands is conserved and similar to that reported for other countries, although a highly diverse blaOXA-48-like plasmid subgroup was present. Chromosomally encoded blaOXA-48-like alleles are from distinct genetic backgrounds and occurs at variable positions containing the DR, thereby indicating multiple independent transpositions.ImportanceOXA-48-type of carbapenem hydrolyzing enzymes encoded by blaOXA-48-like genes from transmissible plasmids or chromosomes of Escherichia coli and Klebsiella pneumoniae have spread world-wide and are of concern. Dissecting the blaOXA-48-like genome architecture at the molecular level by combining short-read and long-read sequencing will lead to understanding trends in the plasmid reservoir of E. coli and K. pneumoniae in the Netherlands and may enhance future international pathogen surveillance.


Antibiotics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1165
Author(s):  
Duong Thi Quy Truong ◽  
Yaovi Mahuton Gildas Hounmanou ◽  
Son Thi Thanh Dang ◽  
John Elmerdahl Olsen ◽  
Giang Thi Huong Truong ◽  
...  

We analyzed and compared genomes of Extended Spectrum Beta-Lactamase (ESBL)-producing Escherichia coli from pigs and pig farm workers at 116 farms in Vietnam. Analyses revealed the presence of blaCTX-M-55, blaCTX-M-27, blaCTX-M-15, blaCTX-M-14, blaCTX-M-3, blaCTX-M-65, blaCTX-M-24, blaDHA-1, and blaCMY2 in both hosts. Most strains from pigs contained quinolones (qnr) and colistin resistance genes (mcr-1 and mcr-3). Isolates predominantly harbored more than one plasmid replicon and some harbored plasmid replicons on the same contigs as the ESBL genes. Five strains from farm workers of ST38 (2), ST69 (1), and ST1722 (2) were classified as either uropathogenic E. coli (UPECHM)/extraintestinal pathogenic E. coli (ExPECJJ) or UPECHM, and the remaining were genetically distinct commensals. A high heterogeneity was found among the ESBL-producing E. coli from pigs and workers, with most isolates belonging to unrelated phylogroups, serogroups, and sequence types with >4046 Single-Nucleotide Polymorphisms-(SNPs). In comparing the genomes of pig isolates to those from humans, it appeared that ESBL-producing E. coli in workers did not predominantly originate from pigs but were rather host-specific. Nevertheless, the occurrence of ESBL-producing E. coli carrying plasmid-mediated colistin and quinolone resistance genes in pigs could represent a potential source for horizontal transmission to humans through food rather than direct contact.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Shaymaa H. Abdel-Rhman ◽  
Rehab M. Elbargisy ◽  
Dina E. Rizk

Escherichia coli is a common pathogen in both humans and animals. Quinolones are used to treat infections caused by Gram-negative bacteria, but resistance genes emerged. Only scarce studies investigated the association between plasmid-mediated quinolone resistance (PMQR) genes and integrons in clinical isolates of E. coli. The current study investigated the prevalence of quinolone resistance and integrons among 134 clinical E. coli isolates. Eighty (59.70%) isolates were quinolone-resistant, and 60/134 (44.77%) isolates were integron positive with the predominance of class I integrons (98.33%). There was a significant association between quinolone resistance and the presence of integrons ( P < 0.0001 ). Isolates from Urology and Nephrology Center and Gastroenterology Hospital were significantly quinolone-resistant and integron positive ( P ≤ 0.0005 ). Detection of PMQR genes on plasmids of integron-positive isolates showed that the active efflux pump genes oqxAB and qepA had the highest prevalence (72.22%), followed by the aminoglycoside acetyltransferase gene (aac(6′)-Ib-cr, 66.67%) and the quinolone resistance genes (qnr, 61.11%). Amplification and sequencing of integrons’ variable regions illustrated that no quinolone resistance genes were detected, and the most predominant gene cassettes were for trimethoprim and aminoglycoside resistance including dfrA17, dfrB4, and dfrA17-aadA5. In conclusion, this study reported the high prevalence of PMQR genes and integrons among clinical E. coli isolates. Although PMQR genes are not cassette-born, they were associated with integrons’ presence, which contributes to the widespread of quinolone resistance in Egypt.


Sign in / Sign up

Export Citation Format

Share Document