scholarly journals blaOXA-48-like genome architecture among carbapenemase-producing Escherichia coli and Klebsiella pneumoniae in the Netherlands

2020 ◽  
Author(s):  
Antoni P.A. Hendrickx ◽  
Fabian Landman ◽  
Angela de Haan ◽  
Dyogo Borst ◽  
Sandra Witteveen ◽  
...  

AbstractCarbapenem-hydrolyzing enzymes belonging to the OXA-48-like group are encoded by blaOXA-48-like alleles and are abundant among Enterobacterales in the Netherlands. Therefore, the objective was to investigate the characteristics, gene content, and diversity of the blaOXA-48-like carrying plasmids and chromosomes of Escherichia coli and Klebsiella pneumoniae collected in the Dutch national surveillance from 2014-2019 in comparison with genome sequences retrieved from 29 countries. By combining short-read and long-read sequencing, 47 and 132 complete blaOXA-48-like plasmids were reconstructed for E. coli and K. pneumoniae, respectively. Distinct plasmid groups designated as pOXA-48, pOXA-181, and pOXA-232 were identified in the Netherlands and varied in size, % G+C, presence of antibiotic resistance genes, replicons and gene content. The pOXA-48 plasmids were variable, while pOXA-181 and pOXA-232 plasmids were conserved. A group of non-related pOXA-48 plasmids contained different resistance genes, non-IncL type replicons or carried no replicons. K. pneumoniae isolates carrying blaOXA-48 or blaOXA-232 were mostly resistant, while E. coli blaOXA-48, blaOXA-181 and chromosomal blaOXA-48 or blaOXA-244 isolates were mostly sensitive for meropenem. Analysis of chromosomally localized blaOXA-48-like alleles revealed that these were flanked by a direct repeat (DR) upstream of IS1R, which were found at multiple locations in the chromosome of distinct genetic backgrounds. In conclusion, the overall blaOXA-48-like plasmid population in the Netherlands is conserved and similar to that reported for other countries, although a highly diverse blaOXA-48-like plasmid subgroup was present. Chromosomally encoded blaOXA-48-like alleles are from distinct genetic backgrounds and occurs at variable positions containing the DR, thereby indicating multiple independent transpositions.ImportanceOXA-48-type of carbapenem hydrolyzing enzymes encoded by blaOXA-48-like genes from transmissible plasmids or chromosomes of Escherichia coli and Klebsiella pneumoniae have spread world-wide and are of concern. Dissecting the blaOXA-48-like genome architecture at the molecular level by combining short-read and long-read sequencing will lead to understanding trends in the plasmid reservoir of E. coli and K. pneumoniae in the Netherlands and may enhance future international pathogen surveillance.

2021 ◽  
Vol 7 (5) ◽  
Author(s):  
Antoni P. A. Hendrickx ◽  
Fabian Landman ◽  
Angela de Haan ◽  
Sandra Witteveen ◽  
Marga G. van Santen-Verheuvel ◽  
...  

Carbapenem-hydrolysing enzymes belonging to the OXA-48-like group are encoded by bla OXA-48-like alleles and are abundant among Enterobacterales in the Netherlands. Therefore, the objective here was to investigate the characteristics, gene content and diversity of the bla OXA-48-like carrying plasmids and chromosomes of Escherichia coli and Klebsiella pneumoniae collected in the Dutch national surveillance from 2014 to 2019 in comparison with genome sequences from 29 countries. A combination of short-read genome sequencing with long-read sequencing enabled the reconstruction of 47 and 132 complete bla OXA-48-like plasmids for E. coli and K. pneumoniae , respectively. Seven distinct plasmid groups designated as pOXA-48-1 to pOXA-48-5, pOXA-181 and pOXA-232 were identified in the Netherlands which were similar to internationally reported plasmids obtained from countries from North and South America, Europe, Asia and Oceania. The seven plasmid groups varied in size, G+C content, presence of antibiotic resistance genes, replicon family and gene content. The pOXA-48-1 to pOXA-48-5 plasmids were variable, and the pOXA-181 and pOXA-232 plasmids were conserved. The pOXA-48-1, pOXA-48-2, pOXA-48-3 and pOXA-48-5 groups contained a putative conjugation system, but this was absent in the pOXA-48-4, pOXA-181 and pOXA-232 plasmid groups. pOXA-48 plasmids contained the PemI antitoxin, while the pOXA-181 and pOXA-232 plasmids did not. Furthermore, the pOXA-181 plasmids carried a virB2-virB3-virB9-virB10-virB11 type IV secretion system, while the pOXA-48 plasmids and pOXA-232 lacked this system. A group of non-related pOXA-48 plasmids from the Netherlands contained different resistance genes, non-IncL-type replicons or no replicons. Whole genome multilocus sequence typing revealed that the bla OXA-48-like plasmids were found in a wide variety of genetic backgrounds in contrast to chromosomally encoded bla OXA-48-like alleles. Chromosomally localized bla OXA-48 and bla OXA-244 alleles were located on genetic elements of variable sizes and comprised regions of pOXA-48 plasmids. The bla OXA-48-like genetic element was flanked by a direct repeat upstream of IS1R, and was found at multiple locations in the chromosomes of E. coli . Lastly, K. pneumoniae isolates carrying bla OXA-48 or bla OXA-232 were mostly resistant for meropenem, whereas E. coli bla OXA-48, bla OXA-181 and chromosomal bla OXA-48 or bla OXA-244 isolates were mostly sensitive. In conclusion, the overall bla OXA-48-like plasmid population in the Netherlands is conserved and similar to that reported for other countries, confirming global dissemination of bla OXA-48-like plasmids. Variations in size, presence of antibiotic resistance genes and gene content impacted pOXA-48, pOXA-181 and pOXA-232 plasmid architecture.


2020 ◽  
Vol 2 (7A) ◽  
Author(s):  
Ebenezer Foster-Nyarko ◽  
Nabil-Fareed Alikhan ◽  
Anuradha Ravi ◽  
Gaëtan Thilliez ◽  
Nicholas Thomson ◽  
...  

Increasing contact between humans and non-human primates provides an opportunity for the transfer of potential pathogens or antimicrobial resistance between different host species. We have investigated genetic diversity and antimicrobial resistance in Escherichia coli isolates from a range of non-human primates dispersed across the Gambia: patas monkey (n=1), western colobus monkey (n=6), green monkey (n=14) and guinea baboon (n=22). From 43 stools, we recovered 99 isolates. We performed Illumina whole-genome shotgun sequencing on all isolates and nanopore long-read sequencing on isolates with antimicrobial resistance genes. We inferred the evolution of E. coli in this population using the EnteroBase software environment. We identified 43 sequence types (ten of them novel), spanning five of the eight known phylogroups of E. coli. Many of the observed sequence types and phylotypes from non-human primates have been associated with human extra-intestinal infection and carry virulence characteristics associated with disease in humans, particularly ST73, ST217 and ST681. However, we found a low prevalence of antimicrobial resistance genes in isolates from non-human primates. Hierarchical clustering showed that ST442 and ST349 from non-human primates are closely related to isolates from human infections, suggesting recent exchange of bacteria between humans and monkeys. Our results are of public health importance, considering the increasing contact between humans and wild primates.


2017 ◽  
Author(s):  
JJ van Aartsen ◽  
CE Moore ◽  
CM Parry ◽  
P Turner ◽  
N Phot ◽  
...  

ABSTRACTExtended-spectrum cephalosporin resistance (ESC-R) in Escherichia coli and Klebsiella pneumoniae is a healthcare threat; high gastrointestinal carriage rates are reported from South-east Asia. Colonisation prevalence data in Cambodia are lacking. We determined gastrointestinal colonisation prevalence of ESC-resistant E. coli (ESC-R-EC) and K. pneumoniae (ESC-R-KP) in Cambodian children/adolescents and associated risk factors; characterised relevant resistance genes, their genetic contexts, and the genetic relatedness of ESC-R strains using whole genome sequencing (WGS). Faeces and questionnaire data were obtained from individuals <16 years in northwestern Cambodia, 2012. WGS of cultured ESC-R-EC/KP was performed (Illumina). Maximum likelihood phylogenies were used to characterise relatedness of isolates; ESC-R-associated resistance genes and their genetic contexts were identified from de novo assemblies using BLASTn and automated/manual annotation. 82/148 (55%) of children/adolescents were ESC-R-EC/KP colonised; 12/148 (8%) were co-colonised with both species. Independent risk factors for colonisation were hospitalisation (OR: 3.12, 95%, CI [1.52-6.38]) and intestinal parasites (OR: 3.11 [1.29-7.51]); school attendance conferred decreased risk (OR: 0.44 [0.21-0.92]. ESC-R strains were diverse; the commonest ESC-R mechanisms were blaCTX-M 1 and 9 sub-family variants. Structures flanking these genes were highly variable, and for blaCTX-M-15,-55and-27, frequently involved IS26. Chromosomal blaCTX-M integration was common in E. coli. Gastrointestinal ESC-R-EC/KP colonisation is widespread in Cambodian children/adolescents; hospital admission and intestinal parasites are independent risk factors. The genetic contexts of blaCTX-M are highly mosaic, consistent with rapid horizontal exchange. Chromosomal integration of blaCTX-M may result in stable propagation in these community-associated pathogens.


2006 ◽  
Vol 188 (8) ◽  
pp. 2812-2820 ◽  
Author(s):  
Duyen Bui ◽  
Judianne Ramiscal ◽  
Sonia Trigueros ◽  
Jason S. Newmark ◽  
Albert Do ◽  
...  

ABSTRACT Xer-mediated dimer resolution at the mwr site of the multiresistance plasmid pJHCMW1 is osmoregulated in Escherichia coli containing either the Escherichia coli Xer recombination machinery or Xer recombination elements from K. pneumoniae. In the presence of K. pneumoniae XerC (XerCKp), the efficiency of recombination is lower than that in the presence of the E. coli XerC (XerCEc) and the level of dimer resolution is insufficient to stabilize the plasmid, even at low osmolarity. This lower efficiency of recombination at mwr is observed in the presence of E. coli or K. pneumoniae XerD proteins. Mutagenesis experiments identified a region near the N terminus of XerCKp responsible for the lower level of recombination catalyzed by XerCKp at mwr. This region encompasses the second half of the predicted α-helix B and the beginning of the predicted α-helix C. The efficiencies of recombination at other sites such as dif or cer in the presence of XerCKp or XerCEc are comparable. Therefore, XerCKp is an active recombinase whose action is impaired on the mwr recombination site. This characteristic may result in restriction of the host range of plasmids carrying this site, a phenomenon that may have important implications in the dissemination of antibiotic resistance genes.


2021 ◽  
Author(s):  
Julian A. Paganini ◽  
Nienke L. Plantinga ◽  
Sergio Arredondo-Alonso ◽  
Rob J.L. Willems ◽  
Anita C. Schurch

The incidence of infections caused by multidrug-resistant Escherichia coli strains has risen in the past years. Antibiotic resistance in E. coli is often mediated by acquisition and maintenance of plasmids. The study of E. coli plasmid epidemiology and genomics often requires long-read sequencing information, but recently a number of tools that allow plasmid prediction from short-read data have been developed. Here, we reviewed 25 available plasmid prediction tools and categorized them into binary plasmid/chromosome classification tools and plasmid reconstruction tools. We benchmarked six tools that aim to reliably reconstruct distinct plasmids, with a special focus on plasmids carrying antibiotic resistance genes (ARGs) such as extended-spectrum beta-lactamase genes. They use either assembly graph information (plasmidSPAdes, gplas), reference databases (MOB-Suite, FishingForPlasmids) or both (HyAsP and SCAPP) to produce plasmid predictions. The benchmark data set consisted of 240 E. coli strains, harboring 631 plasmids, which were representative for the diversity of E. coli in public databases. Notably, these strains were not used for training any of the tools. We found that two thirds (n=425, 66.3.%) of all plasmids were correctly reconstructed by at least one of the six tools, with a range of 92 (14.58%) to 317 (50.23%) correctly predicted plasmids. However, the majority of plasmids that carried antibiotic resistance genes (n=85, 57.8%) could not be completely recovered as distinct plasmids by any of the tools. MOB-suite was the only tool that was able to correctly reconstruct the majority of plasmids (n=317, 50.23%), and performed best at reconstructing large plasmids (n=166, 46.37%) and ARG-plasmids (n=41, 27.9%), but predictions frequently contained chromosome contamination (40%). In contrast, plasmidSPAdes reconstructed the highest fraction of plasmids smaller than 18 kbp (n=168, 61.54%). Large ARG-plasmids, however, were recovered with small precision values (median=0.47, IQR=0.61), indicating that plasmidSPAdes frequently merged sequences derived from distinct replicons. Additionally, only 63% of all plasmid-borne ARGs were correctly predicted by plasmidSPAdes. The remaining four tools (FishingForPlasmids, HyAsP, SCAPP and gplas) were able to correctly reconstruct a combined total of 18 plasmids that were missed by MOB-suite and plasmidSPAdes. Available bioinformatic tools can provide valuable insight into E. coli plasmids, but also have important limitations. This work will serve as a guideline for selecting the most appropriate plasmid reconstruction tool for studies focusing on E. coli plasmids in the absence of long-read sequencing data.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chika Ejikeugwu ◽  
Okoro Nworie ◽  
Morteza Saki ◽  
Hussein O. M. Al-Dahmoshi ◽  
Noor S. K. Al-Khafaji ◽  
...  

Abstract Background Gram-negative bacteria (GNB) including Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae represent the most relevant reservoir of resistance genes such as metallo-β-lactamase (MBL) and AmpC genes that give them the undue advantage to resist antimicrobial onslaught. This study aimed to investigate the occurrence of MBL (blaIMP-1, blaIMP-2, blaVIM-1, blaVIM-2) and AmpC (blaFOX, blaDHA, blaCMY, blaACC) resistance genes in aforementioned GNB collected from abattoir and poultry sources in Nigeria. Results In total, 370 isolates were collected from abattoir tables (n = 130), anal region of cows (n = 120), and the cloacae of poultry birds (n = 120). The test isolates showed high rate of resistance to cephalosporins and carbapenems. The MBLs were phenotypically detected in 22 E. coli, 22 P. aeruginosa, and 18 K. pneumoniae isolates using combined disc test (CDT). However, only 11 E. coli, 24 P. aeruginosa, and 18 Klebsiella pneumoniae isolates were phenotypically confirmed to be AmpC producers using cefoxitin-cloxacillin double disk synergy test (CC-DDST). MBL encoding genes (particularly the blaIMP-1 genes and blaIMP-2 genes) were detected by polymerase chain reaction (PCR) in 12 (54.6%) E. coli, 15 (83.3%) K. pneumoniae, and 16 (72.7%) P. aeruginosa isolates. AmpC genes (particularly the blaCMY genes and blaFOX genes) were found in a total of 5 (29.4%) E. coli isolates, 5 (27.8%) isolates of K. pneumoniae, and 10 (41.7%) isolates of P. aeruginosa. Conclusions Our study showed the circulation of MBL and AmpC genes in GNB from abattoir and poultry origin in Nigeria. Adoption of regular control policies is necessary to reduce the spread of these species as soon as possible, especially in poultry and slaughterhouses.


Author(s):  
Antoni P.A. Hendrickx ◽  
Fabian Landman ◽  
Angela de Haan ◽  
Dyogo Borst ◽  
Sandra Witteveen ◽  
...  

AbstractCarbapenemase-producing Klebsiella pneumoniae emerged over the past decades as an important pathogen causing morbidity and mortality in hospitalized patients. For infection prevention and control, it is important to track the spread of bacterial strains in humans including the plasmids they contain. However, little is known concerning the plasmid repertoire among K. pneumoniae strains. Therefore, the major aim was to recapitulate the size, contents and diversity of the plasmids of genetically related K. pneumoniae strains harboring the beta-lactamase gene blaKPC-2 or blaKPC-3 to determine their dissemination in the Netherlands and the former Dutch Caribbean islands from 2014-2019. Next-generation sequencing was combined with long-read third-generation sequencing to reconstruct 18 plasmids of K. pneumoniae. wgMLST revealed five genetic clusters (termed KpnClusters) comprised of K. pneumoniae blaKPC-2 isolates and four clusters consisted of blaKPC-3 isolates. Each cluster was characterized by a distinct resistome and plasmidome. KpnCluster-019 blaKPC-2 isolates were found both in the Netherlands and the Caribbean islands. K. pneumoniae blaKPC-3 isolates were found in the collection of the Netherlands. The 18 plasmids were mostly unrelated and varied between K. pneumoniae blaKPC-2 and blaKPC-3 clusters. However, the large and medium sized plasmids contained a variety of antibiotic resistance genes, transposons, insertion sequence elements, conjugal transfer systems, cation transport systems, toxin/antitoxin systems, and prophage-related sequence elements. The small plasmids carried genes implicated in virulence. Thus, implementing long-read plasmid sequencing analysis for K. pneumoniae surveillance provided important insights in the success and understanding of transmission of a KpnCluster-019 blaKPC-2 strain between the Netherlands and the Caribbean.ImportanceCarbapenemase-producing Klebsiella pneumoniae has spread globally and is of great concern for debilitated patients. K. pneumoniae is notorious for spreading antimicrobial resistance genes by plasmids among Enterobacterales. Combining short and long read sequencing enables reconstruction of plasmids containing antibiotic resistance genes, conjugation machinery, transposons, toxins and/or virulence determinants and thereby enhancing international pathogen surveillance.


2019 ◽  
Vol 75 (1) ◽  
pp. 60-64 ◽  
Author(s):  
Natacha Martins-Sorenson ◽  
Erik Snesrud ◽  
Danilo Elias Xavier ◽  
Luciana Camila Cacci ◽  
Anthony T Iavarone ◽  
...  

Abstract Objectives To identify the molecular mechanism of colistin resistance in an MDR Acinetobacter baumannii clinical strain isolated in 2008 from a meningitis case in Brazil. Methods Long- and short-read WGS was used to identify colistin resistance genes in A. baumannii strain 597A with a colistin MIC of 64 mg/L. MS was used to analyse lipid A content. mcr was cloned into pET-26b (+) and transformed into Escherichia coli BL21(λDE3)pLysS for analysis. Results A novel plasmid (pAb-MCR4.3) harbouring mcr-4.3 within a Tn3-like transposon was identified. The A. baumannii 597A lipid A MS spectra showed a main molecular ion peak at m/z=2034, which indicated the addition of phosphoethanolamine to the lipid A structure. E. coli BL21 transformed with pET-26b-mcr-4.3 gained colistin resistance with a colistin MIC of 8 mg/L. Conclusions Colistin resistance in A. baumannii 597A was correlated with the presence of a novel plasmid-encoded mcr-4.3 gene.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tania S. Darphorn ◽  
Keshia Bel ◽  
Belinda B. Koenders-van Sint Anneland ◽  
Stanley Brul ◽  
Benno H. Ter Kuile

AbstractResistance plasmids play a crucial role in the transfer of antimicrobial resistance from the veterinary sector to human healthcare. In this study plasmids from foodborne Escherichia coli isolates with a known (ES)BL or tetracycline resistance were sequenced entirely with short- and long-read technologies to obtain insight into their composition and to identify driving factors for spreading. Resistant foodborne E. coli isolates often contained several plasmids coding for resistance to various antimicrobials. Most plasmids were large and contained multiple resistance genes in addition to the selected resistance gene. The majority of plasmids belonged to the IncI, IncF and IncX incompatibility groups. Conserved and variable regions could be distinguished in each of the plasmid groups. Clusters containing resistance genes were located in the variable regions. Tetracycline and (extended spectrum) beta-lactamase resistance genes were each situated in separate clusters, but sulphonamide, macrolide and aminoglycoside formed one cluster and lincosamide and aminoglycoside another. In most plasmids, addiction systems were found to maintain presence in the cell.


2017 ◽  
Vol 1 (2) ◽  
pp. 48-60
Author(s):  
A.G. Salmanov ◽  
A.V. Rudenko

Мета роботи — вивчити резистентність до антибіотиків бактеріальних збудників інфекцій сечових шляхів (ІСШ), виділених у пацієнтів урологічного стаціонару в м. Києві. Матеріали і методи. Досліджено 1612 штамів бактерій, виділених із сечі хворих з ІСШ (цистит, уретрит, пієлонефрит), госпіталізованих в урологічне відділення ДУ «Інститут урології НАМН України» у м. Києві протягом 2016 р. Серед пацієнтів переважали жінки — 1201 (74,5 %). Вік хворих становив від 17 до 74 років. Для збору даних використано медичну документацію лікарні. Мікробіологічні дослідження виконано у лабораторії мікробіології ДУ «Інститут урології НАМН України». Аналізували результати культурального дослідження зразків сечі, зібраних за наявності клінічних ознак ІСШ. Дослідження клінічного матеріалу та інтерпретацію отриманих результатів проводили загальноприйнятими методами. Вивчено чутливість уропатогенів до 31 антибіотика дискодифузійним методом відповідно до рекомендацій Інституту клінічних та лабораторних стандартів США (Clinical and Laboratory Standards Institute (CLSI)). Результати та обговорення. Аналіз мікробного спектра сечі виявив домінування серед уропатогенів штамів Escherichia coli (32,0 %), Enterococcus faecalis (19,5 %), Klebsiella pneumoniae (10,9 %), Staphylococcus epidermidis (8,9 %), S. haemolyticus (6,5 %) та Pseudomonas aeruginosa (6,4 %). Частка Enterococcus faecium, Enterobacter aerogenes і Streptococcus viridans становила відповідно 2,5, 2,2 і 1,6 %, Enterobacter cloacae, Klebsiella oxytoca, Acinetobacter baumannii, Proteus vulgaris та Providencia rettgeri — менше 1,0 %. У більшості випадків (69,7 %) мікроорганізми виділено у монокультурі, у решті випадків — у мікробних асоціа- ціях. Високу резистентність до тестованих антибіотиків виявили штами E. aerogenes (45,1 %), E. cloacae (45,7 %), E. faecium (40,9 %), E. faecalis (40,7 %), E. coli (39,9 %), P. aeruginosa (34,0 %), K. pneumoniae (28,6 %). Найбільш активними до уропатогенів були іміпенем (E. coli — 87,6 %, P. aeruginosa — 75,7 %, E. cloacae — 67,3 %, E. aerogenes — 72,6 %, K. pneumoniae — 93,2 %), меропенем (E. coli — 89,1 %, P. aeruginosa — 76,7 %, K. pneumoniae — 82,6 %), лефлоцин (E. coli — 74,5 %, ентерококи — 78,7 %, P. aeruginosa — 76,7 %, E. cloacae — 73,9 %, E. aerogenes — 80,4 %, K. pneumoniae — 83,5 %), амоксицилін/клавуланат (ентерококи — 84,6 %), фурагін (ентерококи — 82,6 %), цефоперазон (K. pneumoniae — 89,2 %, P. aeruginosa — 73,8 %), цефтріаксон (K. pneumoniae — 80,1 %). Висновки. Антибіотикорезистентність збудників ІСШ — важлива терапевтична проблема. Найбільшою активністю до уропатогенів характеризуються іміпенем, меропенем, лефлоцин, амоксицилін/ клавуланат, фурагін, цефоперазон, цефтріаксон, які можна розглядати як препарат вибору для призначення стартової терапії ІСШ. Необхідно здійснювати постійний моніторинг за резистентністю до дії антибіотиків. Політику використання антибіотиків у кожному стаціонарі слід визначати залежно від локальних даних щодо резистентності до протимікробних препаратів.


Sign in / Sign up

Export Citation Format

Share Document