scholarly journals Tsunami-generated magnetic fields have primary and secondary arrivals like seismic waves

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Takuto Minami ◽  
Neesha R. Schnepf ◽  
Hiroaki Toh

AbstractA seafloor geomagnetic observatory in the northwest Pacific has provided very long vector geomagnetic time-series. It was found that the time-series include significant magnetic signals generated by a few giant tsunami events including the 2011 Tohoku Tsunami. Here we report that the tsunami-generated magnetic fields consist of the weak but first arriving field, and the strong but second arriving field—similar to the P- and S-waves in seismology. The latter field is a result of coupling between horizontal particle motions of the conductive seawater and the vertical component of the background geomagnetic main field, which have been studied well so far. On the other hand, the former field stems from coupling between vertical particle motions and the horizontal component of the geomagnetic main field parallel to tsunami propagation direction. The former field has been paid less attention because horizontal particle motions are dominant in the Earth’s oceans. It, however, was shown that not only the latter but also the former field is significant especially around the magnetic equator where the vertical component of the background magnetic field vanishes. This implies that global tsunami early warning using tsunami-generated magnetic fields is possible even in the absence of the background vertical geomagnetic component.

2021 ◽  
Vol 13 (14) ◽  
pp. 2783
Author(s):  
Sorin Nistor ◽  
Norbert-Szabolcs Suba ◽  
Kamil Maciuk ◽  
Jacek Kudrys ◽  
Eduard Ilie Nastase ◽  
...  

This study evaluates the EUREF Permanent Network (EPN) station position time series of approximately 200 GNSS stations subject to the Repro 2 reprocessing campaign in order to characterize the dominant types of noise and amplitude and their impact on estimated velocity values and associated uncertainties. The visual inspection on how different noise model represents the analysed data was done using the power spectral density of the residuals and the estimated noise model and it is coherent with the calculated Allan deviation (ADEV)-white and flicker noise. The velocities resulted from the dominant noise model are compared to the velocity obtained by using the Median Interannual Difference Adjusted for Skewness (MIDAS). The results show that only 3 stations present a dominant random walk noise model compared to flicker and powerlaw noise model for the horizontal and vertical components. We concluded that the velocities for the horizontal and vertical component show similar values in the case of MIDAS and maximum likelihood estimation (MLE), but we also found that the associated uncertainties from MIDAS are higher compared to the uncertainties from MLE. Additionally, we concluded that there is a spatial correlation in noise amplitude, and also regarding the differences in velocity uncertainties for the Up component.


2018 ◽  
Vol 33 (25) ◽  
pp. 1850144
Author(s):  
Maryam Gholizadeh Arashti ◽  
Majid Dehghani

The Schwinger effect in the presence of instantons and background magnetic field was considered to study the dependence of critical electric field on instanton density and magnetic field using AdS/CFT conjecture. The gravity side is the near horizon limit of D3[Formula: see text]D(−[Formula: see text]1) background with electric and magnetic fields on the brane. Our approach is based on the potential analysis for particle–antiparticle pair at zero and finite temperatures, where the zero temperature case is a semi-confining theory. We find that presence of instantons suppresses the pair creation effect, similar to a background magnetic field. Then, the production rate will be obtained numerically using the expectation value of circular Wilson loop. The obtained production rate in a magnetic field is in agreement with previous results.


1999 ◽  
Vol 17 (9) ◽  
pp. 1145-1154 ◽  
Author(s):  
O. Verkhoglyadova ◽  
A. Agapitov ◽  
A. Andrushchenko ◽  
V. Ivchenko ◽  
S. Romanov ◽  
...  

Abstract. Compressional waves with periods greater than 2 min (about 10-30 min) at low geomagnetic latitudes, namely compressional Pc5 waves, are studied. The data set obtained with magnetometer MIF-M and plasma analyzer instrument CORALL on board the Interball-1 are analyzed. Measurements performed in October 1995 and October 1996 in the dawn plasma sheet at -30 RE ≤ XGSM and |ZGSM| ≤ 10 RE are considered. Anti-phase variations of magnetic field and ion plasma pressures are analyzed by searching for morphological similarities in the two time series. It is found that longitudinal and transverse magnetic field variations with respect to the background magnetic field are of the same order of magnitude. Plasma velocities are processed for each time period of the local dissimilarity in the pressure time series. Velocity disturbances occur mainly transversely to the local field line. The data reveal the rotation of the velocity vector. Because of the field line curvature, there is no fixed position of the rotational plane in the space. These vortices are localized in the regions of anti-phase variations of the magnetic field and plasma pressures, and the vortical flows are associated with the compressional Pc5 wave process. A theoretical model is proposed to explain the main features of the nonlinear wave processes. Our main goal is to study coupling of drift Alfven wave and magnetosonic wave in a warm inhomogeneous plasma. A vortex is the partial solution of the set of the equations when the compression is neglected. A compression effect gives rise to a nonlinear soliton-like solution.Key words. Magnetosphere physics (magnetotail) · Space plasma physics (kinetic and MHD theory; non-linear phenomena)


1979 ◽  
Vol 69 (6) ◽  
pp. 2037-2061
Author(s):  
A. F. Espinosa

abstract A magnitude (ML) scaling law has been derived from the strong-motion data base of the San Fernando earthquake of February 9, 1971, and the results have been compared with other strong-motion recordings obtained from 62 earthquakes in the Western United States. The relationship derived is ML = 3.21 + 1.35 log10Δ + log10v. An excellent agreement was obtained between the determined ML values in this study and those evaluated by Kanamori and Jennings (1978). This scaling law is applicable to the collected data from 63 earthquakes whose local magnitudes range from about 4.0 to 7.2, recorded at epicentral distances between about 5 to 300 km, and with short-period seismic waves in the range of 0.2 to 3.0 sec. The Long Beach earthquake of 1933, with an ML = 6.3 (PAS) and an ML = 6.43 ± 0.36 as determined by Kanamori and Jennings is in agreement with an ML = 6.49 ± 0.32 obtained in this study. The Imperial Valley earthquake of 1940, with an ML = 6.5 (PAS), compares well with an ML = 6.5 as determined in this study. The Kern County earthquake of 1952, with an ML = 7.2 (BRK), is in fairly good agreement with the ML = 7.0 ± 0.2 obtained in this investigation. This value is significantly lower than the commonly quoted 7.7 value for this event. The San Francisco earthquake of 1957, with an ML = 5.3 (BRK), agrees very well with an ML = 5.3 ± 0.1 as determined in this study. The Parkfield earthquake of 1966 has an ML = 5.8 ± 0.3, which is consistent with the 5.6 (PAS). The procedure developed here is applied to the data base obtained from the Western United States strong-motion recordings. The procedure allows the evaluation of ML for moderate and larger earthquakes from the first integration of the strong-motion accelerograms and allows the direct determination of ML from the scaled amplitudes in a rapid, economical, and accurate manner. It also has allowed for the extension of the trend of the attenuation curve for horizontal particle velocities at distances less than 5 km for different size events.


2019 ◽  
Vol 11 (17) ◽  
pp. 1975 ◽  
Author(s):  
Yuanjin Pan ◽  
Ruizhi Chen ◽  
Hao Ding ◽  
Xinyu Xu ◽  
Gang Zheng ◽  
...  

Surface and deep potential geophysical signals respond to the spatial redistribution of global mass variations, which may be monitored by geodetic observations. In this study, we analyze dense Global Positioning System (GPS) time series in the Eastern Tibetan Plateau using principal component analysis (PCA) and wavelet time-frequency spectra. The oscillations of interannual and residual signals are clearly identified in the common mode component (CMC) decomposed from the dense GPS time series from 2000 to 2018. The newly developed spherical harmonic coefficients of the Gravity Recovery and Climate Experiment Release-06 (GRACE RL06) are adopted to estimate the seasonal and interannual patterns in this region, revealing hydrologic and atmospheric/nontidal ocean loads. We stack the averaged elastic GRACE-derived loading displacements to identify the potential physical significance of the CMC in the GPS time series. Interannual nonlinear signals with a period of ~3 to ~4 years in the CMC (the scaled principal components from PC1 to PC3) are found to be predominantly related to hydrologic loading displacements, which respond to signals (El Niño/La Niña) of global climate change. We find an obvious signal with a period of ~6 yr on the vertical component that could be caused by mantle-inner core gravity coupling. Moreover, we evaluate the CMC’s effect on the GPS-derived velocities and confirm that removing the CMC can improve the recognition of nontectonic crustal deformation, especially on the vertical component. Furthermore, the effects of the CMC on the three-dimensional velocity and uncertainty are presented to reveal the significant crustal deformation and dynamic processes of the Eastern Tibetan Plateau.


Author(s):  
Maryam Safarshahi ◽  
Igor B. Morozov

ABSTRACT Empirical models of geometrical-, Q-, t-star, and kappa-type attenuation of seismic waves and ground-motion prediction equations (GMPEs) are viewed as cases of a common empirical standard model describing variation of wave amplitudes with time and frequency. Compared with existing parametric and nonparametric approaches, several new features are included in this model: (1) flexible empirical parameterization with possible nonmonotonous time or distance dependencies; (2) joint inversion for time or distance and frequency dependencies, source spectra, site responses, kappas, and Q; (3) additional constraints removing spurious correlations of model parameters and data residuals with source–receiver distances and frequencies; (4) possible kappa terms for sources as well as for receivers; (5) orientation-independent horizontal- and three-component amplitudes; and (6) adaptive filtering to reduce noise effects. The approach is applied to local and regional S-wave amplitudes in southeastern Iran. Comparisons with previous studies show that conventional attenuation models often contain method-specific biases caused by limited parameterizations of frequency-independent amplitude decays and assumptions about the models, such as smoothness of amplitude variations. Without such assumptions, the frequency-independent spreading of S waves is much faster than inferred by conventional modeling. For example, transverse-component amplitudes decrease with travel time t as about t−1.8 at distances closer than 90 km and as t−2.5 beyond 115 km. The rapid amplitude decay at larger distances could be caused by scattering within the near surface. From about 90 to 115 km distances, the amplitude increases by a factor of about 3, which could be due to reflections from the Moho and within the crust. With more accurate geometrical-spreading and kappa models, the Q factor for the study area is frequency independent and exceeds 2000. The frequency-independent and Q-type attenuation for vertical-component and multicomponent amplitudes is somewhat weaker than for the horizontal components. These observations appear to be general and likely apply to other areas.


1988 ◽  
Vol 39 (1) ◽  
pp. 103-114 ◽  
Author(s):  
J. F. McKenzie ◽  
M. K. Dougherty

It is shown that a plasma in which the background magnetic field varies in a direction perpendicular to its line of action can support ‘Rossby-type’ electrostatic waves at frequencies very much less than the ion gyrofrequency. The intrinsic wave propagation mechanism at work is structurally similar to that in the atmospheric Rossby wave, which comes about from fluid perturbations being in quasi-geostrophic equilibrium (i.e. the Coriolis force nearly balances the pressure gradient) and the latitudinal variation of the vertical component of rotational frequency vector (the β-effect) so that the time rate of change of the vertical component of the fluid vorticity is equal to the northward transport of the planetary vorticity. In a plasma this ‘geostrophic balance’ arises from the near-vanishing of the Lorentz force on the ion motion while the β-effect is provided by the transverse spatial variation of the ambient magnetic field. Unlike the atmosphere, however, such a magnetized plasma is capable of supporting two distinct types of Rossby wave. The interesting dispersive and anisotropic features of these waves are revealed by the properties of their wave operators and described in terms of the geometry of their wavenumber surfaces. Since these surfaces intersect, inhomogeneity or nonlinearity will give rise to strong mode-mode coupling in regions where the phases of both modes nearly match.


The measurement of the vertical component of the earth’s magnetic field is a less simple operation than that of the horizontal component. The horizontal field measurements are on a satisfactory basis, whether made by the swinging magnet method, or by the more recently developed electric magnetometers, in which known magnetic fields may be provided by means of known currents flowing through coils of known dimensions.


2007 ◽  
Vol 7 (6) ◽  
pp. 695-701 ◽  
Author(s):  
G. Marcato ◽  
K. Fujisawa ◽  
M. Mantovani ◽  
A. Pasuto ◽  
S. Silvano ◽  
...  

Abstract. The aim of the paper is to present the modelling of the ground effects of seismic waves on a large debris deposit lying on a steep mountain slope, with particular attention paid to the potential triggering of slope movements. The study site is a mass of 2.5 million m3 rock fall deposit, named "Monte Salta Landslide", located on the northern slope of the Vajont valley, at the border between Veneto and Friuli Venezia Giulia regions in north-eastern Italy. Several historical landslide events were reported in the area in the past, first one dating back to the 17th century. The landslide deposit completely mantles the slope with a thick cover of rock blocks. The Mt. Salta landslide is conditioned by the presence of Mt. Borgà regional thrust, which uplifts Jurassic limestone on the top of Cretaceous rock units. Above the thrust zone, folded and highly fractured rock mass dips steeply towards the slope free face, producing highly unstable setting. The study area has been classified as high seismic hazard and different vulnerable elements can be affected by the remobilisation of debris, among which a village, a national road and a big quarry that was opened, with the intent to exploit the part of the landslide deposit for construction purposes. In this study, numerical analysis was performed, to simulate the slope behaviour using distinct element method and applying UDEC code. The 2-D models were built on three cross-sections and elasto-plastic behaviour was assumed, both for rock matrix and discontinuities. The earthquake effect was modelled in pseudo-dynamic way, i.e. by magnifying the acceleration and applying also its horizontal component. The expected seismic acceleration in the study area was calculated on the basis of previous studies as equal to 0.28 g. The results proved that the increase of the vertical component alone has a small influence on the deformational behaviour of the system. Hence, the acceleration vector was deviated at 5° and then at 10° from the vertical. A small increment of the displacement was observed in the first case, whereas very large movements occurred in the second. Therefore, it can be concluded that, besides the magnitude of the earthquake, even small seismic waves in horizontal direction could trigger significant movements and therefore hazardous conditions. The modelled scenario should be helpful for planning of the functional countermeasure works and civil defence evacuation plan.


1977 ◽  
Vol 80 (2) ◽  
pp. 223-236 ◽  
Author(s):  
N. Rudraiah ◽  
M. Venkatachalappa ◽  
P. Kandaswamy

The propagation of internal Alfvén-ácoustic-gravity waves in a compressible, stratified, inviscid, perfectly conducting, isothermal atmosphere in the presence of a horizontal magnetic field is investigated by considering both the horizontal and the vertical component of the group velocity. The vertical component of the group velocity is important because it determines the speed at which energy travels upwards and becomes available for heating the upper regions. The regions of propagation and no propagation of waves are delineated for different magnetic Mach numbers, in a refractive-index domain. The horizontal and vertical group velocities are compared with the corresponding phase velocity of the wave motion. It is found that the horizontal group velocity of the internal waves is always less than the horizontal phase velocity for small magnetic fields and vice versa for large magnetic fields, whereas the vertical group velocity is always opposite in direction to the vertical phase velocity for small magnetic fields and vice versa for large magnetic fields. We have also drawn the reflexion condition in a wave-number-frequency domain for different Mach numbers.


Sign in / Sign up

Export Citation Format

Share Document