scholarly journals Relevance of pathogenicity prediction tools in human RYR1 variants of unknown significance

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kerstin Hoppe ◽  
Karin Jurkat-Rott ◽  
Stefanie Kranepuhl ◽  
Scott Wearing ◽  
Sebastian Heiderich ◽  
...  

AbstractMalignant hyperthermia (MH) is a pharmacogenetic disorder of skeletal muscle metabolism characterized by generalized muscle rigidity, increased body temperature, rhabdomyolysis, hyperkalemia and severe metabolic acidosis. The underlying mechanism of MH involves excessive Ca2+ release from myotubes via the ryanodine receptor type 1 (RYR1) and the voltage-dependent L-type calcium channel (CACNA1S). As more than 300 variants of unknown significance have been detected to date, we examined whether freely available pathogenicity prediction tools are able to detect relevant MH causing variants. In this diagnostic accuracy study, blood samples from 235 individuals with a history of a clinical malignant hyperthermia or their close relatives were genetically screened for RYR1 variants of all 106 RYR1 exons and additionally for known variants of CACNA1S. In vitro contracture tests were conducted on muscle biopsies obtained from all individuals, independently of whether a pathogenic variant, a variant of unknown significance or no variant was detected. Comparisons were made to three established bioinformatic pathogenicity detection tools to identify the clinical impact of the variants of unknown significance. All detected genetic variants were tested for pathogenicity by three in silico approaches and compared to the in vitro contracture test. Sensitivity and specificity of exon screening of all individuals listed in our MH database was analyzed. Exon screening identified 97 (41%) of the 235 individuals as carriers of pathogenic variants. Variants of unknown significance were detected in 21 individuals. Variants of unknown significance were subdivided into 19 malignant-hyperthermia-susceptible individuals and 2 non-malignant-hyperthermia-susceptible individuals. All pathogenic variants as well as the malignant-hyperthermia-suspectible variants were correctly identified by the bioinformatic prediction tools. Sensitivity of in silico approaches ranged between 0.71 and 0.98 (Polyphen 0.94 [CI 95% 0.75; 0.99]; Sift 0.98 [CI 95% 0.81; 0.99]; MutationTaster 0.92 [CI 95% 0.75; 0.99]). Specificity differed depending on the used tool (Polphen 0.98 [CI 95% 0.32; 0.99]; Sift 0.98 [CI 95% 0.32; 0.99]; MutationTaster 0.00 [CI 95% 0.00; 0.60]). All pathogenic variants and variants of unknown significance were scored as probably damaging in individuals, demonstrating a high sensitivity. Specificity was very low in one of the three tested programs. However, due to potential genotype–phenotype discordance, bioinformatic prediction tools are currently of limited value in diagnosing pathogenicity of MH-susceptible variants.

2012 ◽  
Vol 2 (1) ◽  
pp. 6 ◽  
Author(s):  
Hervé Crehalet ◽  
Gilles Millat ◽  
Juliette Albuisson ◽  
Véronique Bonnet ◽  
Isabelle Rouvet ◽  
...  

1990 ◽  
Vol 259 (1) ◽  
pp. R133-R138 ◽  
Author(s):  
R. S. Fay ◽  
E. M. Gallant

Piglets less than 8 wk of age that are known by genotype to be malignant hyperthermia-susceptible (MHS) do not usually develop characteristic hyperthermia and limb muscle rigidity in response to a brief halothane exposure (5 min of 3%). To determine whether a malignant hyperthermia (MH) episode could nevertheless be provoked by a more rigorous challenge, both genetically MHS (Pietrain) and normal (Yorkshire) 5-wk-old piglets were exposed to a combined halothane-succinylcholine challenge. Only two of eight MHS piglets developed limb rigidity; however, all MHS piglets (and no normal piglets) developed clinical signs of MH episode initiation during the 30-min challenge. Temperatures rose from 37.4 to 38.6 degrees C in MHS piglets while falling slightly in normal piglets. In MHS piglets, venous pH fell from 7.46 +/- 0.02 to 6.88 +/- 0.07, PVCO2 rose from 36 +/- 2 to 126 +/- 17 mmHg, and plasma concentration of K+ rose from 4.0 +/- 0.1 to 7.1 +/- 0.6 mM, whereas all values remained stable in normal piglets. Muscles removed from the same piglets before the halothane-succinylcholine challenge were exposed to halothane in vitro. The muscles from genetically MHS piglets responded to halothane with characteristic depression of tetanic tension and prolonged tetanus relaxation time but did not develop halothane-induced contractures. We conclude that, in the absence of either halothane-induced limb rigidity or in vitro contractures, these young animals were still susceptible to potentially fatal MH episodes on exposure to appropriate triggering agents. The MH defect is apparently partially masked in piglets and expressed fully only in older pigs.


2021 ◽  
Author(s):  
Amein Kadhem AlAli ◽  
Abdulrahman Al-Enazi ◽  
Ahmed Ammar ◽  
Mahmoud Hajj ◽  
Cyril Cyrus ◽  
...  

Abstract Background Epilepsy, a serious chronic neurological condition effecting up to 100 million people globally, has clear genetic underpinnings including common and rare variants. In Saudi Arabia the prevalence of epilepsy is high and caused mainly by perinatal and genetic factors. No whole-exome sequencing (WES) studies have been performed to date in Saudi Arabian Epilepsy cohorts. This offers a unique opportunity for the discovery of rare genetic variants impacting this disease as there is a high rate of consanguinity amongst large tribal pedigrees. Results We performed WES on 144 individuals diagnosed with epilepsy, to interrogate known Epilepsy related genes for known and functional novel variants. We also used an American College of Medical Genetics (ACMG) guideline based variant prioritization approach in an attempt to discover putative causative variants. We identified a 32 potentially causative pathogenic variants across 30 different genes in 44/144 (30%) of these Saudi Epilepsy individuals. We also identified 232 variants of unknown significance (VUS) across 101 different genes in 133/144 (92%) subjects. Strong enrichment of variants of likely pathogenicity were observed in previously described epilepsy-associated loci, and a number of putative pathogenic variants in novel loci are also observed. Conclusion Several putative pathogenic variants known to be epilepsy-related loci were identified for the first time in our population, in addition to several potential new loci have been identified which may be prioritized for further investigation.


2020 ◽  
Vol 9 (2) ◽  
pp. 412 ◽  
Author(s):  
Viviana Pensato ◽  
Stefania Magri ◽  
Eleonora Dalla Bella ◽  
Pierpaola Tannorella ◽  
Enrica Bersano ◽  
...  

Amyotrophic lateral sclerosis (ALS) is an adult-onset progressive neurodegenerative disease due to motor neuron loss variably associated with frontotemporal dementia (FTD). Next generation sequencing technology revealed an increasing number of rare and novel genetic variants and interpretation of their pathogenicity represents a major challange in the diagnosis of ALS. We selected 213 consecutive patients with sporadic or familial (16%) ALS, tested negative for SOD1, FUS, TARDBP, and C9orf72 mutations. To reveal rare forms of genetic ALS, we performed a comprehensive multi-gene panel screening including 46 genes associated with ALS, hereditary motor neuronopathies, spastic paraplegia, and FTD. Our study allowed the identification of pathogenic or likely pathogenic variants in 4.2% of patients. The genes with the highest percentage of pathogenic variants were OPTN (1%), VCP (1%) SQSTM1(1%), SETX (0.4%), FIG4 (0.4%), and GARS1 (0.4%) genes. We also found 49 novel or rare gene variants of unknown significance in 30 patients (14%), 44 unlikely pathogenic variants (39%), and 48 variants in ALS susceptibility genes. The results of our study suggest the screening of OPTN, VCP, and SQSTM1 genes in routine diagnostic investigations for both sporadic and familial cases, and confirm the importance of diagnosis and couselling for patients and their relative family members.


Cardiology ◽  
2020 ◽  
Vol 145 (11) ◽  
pp. 746-756
Author(s):  
Tatiana Vershinina ◽  
Yulia Fomicheva ◽  
Alexey Muravyev ◽  
John Jorholt ◽  
Alexandra Kozyreva ◽  
...  

<b><i>Introduction:</i></b> Left ventricular non-compaction (LVNC) represents a genetically heterogeneous cardiomyopathy which occurs in both children and adults. Its genetic spectrum overlaps with other types of cardiomyopathy. However, LVNC phenotypes in different age groups can have distinct genetic aetiologies. The aim of the study was to decipher the genetic spectrum of LVNC presented in childhood. <b><i>Patient Group and Methods:</i></b> Twenty patients under the age of 18 years diagnosed with LVNC were enrolled in the study. Target sequencing and whole-exome sequencing were performed using a panel of 108 cardiomyopathy-associated genes. Pathogenic, likely pathogenic, and variants of unknown significance found in genes highly expressed in cardiomyocytes were considered as variants of interest for further analysis. <b><i>Results:</i></b> The median age at presentation was 8.0 (0.1–17) years, with 6 patients presenting before 1 year of age. Twelve (60%) patients demonstrated reduced ejection fraction. Right ventricular (RV) dilation was registered in 6 (30%), often in combination with reduced RV contractility (25%). Almost half (45%) of the patients demonstrated biventricular involvement already at disease presentation. For pathogenic and likely pathogenic variants, the positive genotyping rate was 45%, and these variants were found mainly in non-contractile structural sarcomeric genes (<i>ACTN2</i>, <i>MYPN</i>, and <i>TTN</i>) or in metabolic and signal transduction genes (<i>BRAF</i> and <i>TAZ</i>). Likely pathogenic <i>TAZ</i> variants were detected in all 5 patients suspected of having Barth syndrome. No pathogenic or likely pathogenic variants were found in genes encoding for sarcomeric contractile proteins, but variants of unknown significance were detected in 3 out of 20 patients (<i>MYH6</i>, <i>MYH7</i>, and <i>MYLK2</i>). In 4 patients, variants of unknown significance in ion-channel genes were detected. <b><i>Conclusion:</i></b> We detected a low burden of contractile sarcomeric variants in LVNC patients presenting below the age of 18 years, with the major number of variants residing in non-contractile structural sarcomeric genes. The identification of the variants in ion-channel and related genes not previously associated with LVNC in paediatric patients requires further examination of their functional role.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jinyuan Vero Li ◽  
Chai-Ann Ng ◽  
Delfine Cheng ◽  
Zijing Zhou ◽  
Mingxi Yao ◽  
...  

AbstractMechanosensitive channels are integral membrane proteins that sense mechanical stimuli. Like most plasma membrane ion channel proteins they must pass through biosynthetic quality control in the endoplasmic reticulum that results in them reaching their destination at the plasma membrane. Here we show that N-linked glycosylation of two highly conserved asparagine residues in the ‘cap’ region of mechanosensitive Piezo1 channels are necessary for the mature protein to reach the plasma membrane. Both mutation of these asparagines (N2294Q/N2331Q) and treatment with an enzyme that hydrolyses N-linked oligosaccharides (PNGaseF) eliminates the fully glycosylated mature Piezo1 protein. The N-glycans in the cap are a pre-requisite for N-glycosylation in the ‘propeller’ regions, which are present in loops that are essential for mechanotransduction. Importantly, trafficking-defective Piezo1 variants linked to generalized lymphatic dysplasia and bicuspid aortic valve display reduced fully N-glycosylated Piezo1 protein. Thus the N-linked glycosylation status in vitro correlates with efficient membrane trafficking and will aid in determining the functional impact of Piezo1 variants of unknown significance.


1985 ◽  
Vol 57 (10) ◽  
pp. 994-996 ◽  
Author(s):  
W.K. ILIAS ◽  
C.H. WILLIAMS ◽  
R.T. FULFER ◽  
S.E. DOZIER

Sign in / Sign up

Export Citation Format

Share Document