scholarly journals Micro-RNA miR-542-3p suppresses decidualization by targeting ILK pathways in human endometrial stromal cells

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xinlan Qu ◽  
Yuan Fang ◽  
Siying Zhuang ◽  
Yuanzhen Zhang

AbstractDecidualization of human endometrial stromal cells (HESCs) is a vital step for successful pregnancy. However, the process by which micro-RNAs (miRNAs) regulate decidualization remains elusive. Our current study was designed to identify the mechanism of miRNA miR-542-3p and its potential targets in regulating decidualization. The results showed that miR-542-3p was down-regulated in HESCs. Luciferase assay confirmed that integrin-linked kinase (ILK) is a direct target of miR-542-3p. Overexpression of miR-542-3p resulted in decreased ILK and downstream transforming growth factor β1 (TGF-β1) and SMAD family member 2 (SMAD2) expression. Additional expression of ILK attenuates the miR542-3p-induced down-regulation of TGF-β1 and SMAD2, changes properties such as suppression of proliferation and invasion, and induction of apoptosis, thereby affecting the differentiation of HESCs. Moreover, miR-542-3p overexpression caused down-regulation of the angiogenic factors vascular endothelial growth factor (VEGF), cyclooxygenase-2 (COX-2) and matrix metalloproteinase-9 (MMP-9), and the supernatant of HESCs overexpressing miR-542-3p inhibited the formation of tubular structures in human umbilical vein endothelial cells (HUVECs), suggesting that miR-542-3p inhibits angiogenesis of HUVECs. Furthermore, in our mouse model, following injection of miR-542-3p mimic into the endometrium of mice at pregnancy day 8 (D8), we found decreased miR-542-3p expression and loss of embryo implantation sites. In conclusion, miR-542-3p can affect the process of endometrial decidualization by down-regulating ILK. The present study adds further understanding of the process and regulation of decidualization.

Endocrinology ◽  
2003 ◽  
Vol 144 (10) ◽  
pp. 4280-4284 ◽  
Author(s):  
Wei Zhou ◽  
Irwin Park ◽  
Michael Pins ◽  
James M. Kozlowski ◽  
Borko Jovanovic ◽  
...  

In a preliminary study, we observed that TGF-β1 induced both proliferation and growth arrest in prostatic stromal cells, depending on the concentration of TGF-β1 used in the culture medium. In this study, we explored possible mechanisms of this dual effect of TGF-β. Primary cultures of prostatic stromal cells, established from clinical surgical specimens and treated with low doses of TGF-β1 (0.001–0.01 ng/ml), resulted in an increase in cell proliferation. The addition of neutralizing antibody against platelet-derived growth factor (PDGF)-BB, but not anti-PDGF-AA, abrogated this stimulatory effect of TGF-β1. TGF-β1 treatment resulted in a dose-related increase in PDGF-BB production as measured by ELISA. Cells underwent growth arrest at high concentrations of TGF-β1 (1.0 and 10 ng/ml). An inhibitor of cyclin-dependent kinase (cdk), p15INK4b, was up-regulated at both transcript and protein levels in these cultures by TGF-β1 in a dose-related manner as determined by RT-PCR and Western blot analysis. The transcript, but not the protein, for another cdk inhibitor, p21Cip1, was up-regulated with treatment of TGF-β1 to these cells. Levels of other cdk inhibitors, such as p16INK4a and p27Kip1, were constitutively expressed in prostatic stromal cells and were not significantly affected by TGF-β1 treatment. Finally, the growth arrest effect of TGF-β1 was abrogated when antisense oligonucleotides to p15INH4b, but not p21Cip1, were added to the culture medium. These data indicate that the dual effect of TGF-β1 is mediated, at least, by up-regulation of PDGF-BB and p15INK4b, respectively.


2012 ◽  
Vol 29 (6) ◽  
pp. 377-383 ◽  
Author(s):  
Tetsuya Maekawa ◽  
Atsuko Sakuma ◽  
Shusuke Taniuchi ◽  
Yuki Ogo ◽  
Taisen Iguchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document