scholarly journals Buspirone alleviates anxiety, depression, and colitis; and modulates gut microbiota in mice

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jeon-Kyung Kim ◽  
Sang-Kap Han ◽  
Min-Kyung Joo ◽  
Dong-Hyun Kim

AbstractGut microbiota regulate the neurodevelopmental processes and brain functions through the regulation of the microbiota–gut interaction and gut–brain communication. Buspirone, an agonist for serotonin 5-HT1A receptors, is used for the treatment of anxiety/depression. Therefore, to understand the gut microbiota-mediated mechanism of buspirone on anxiety/depression, we examined its effect on the immobilization stress (IS) or Escherichia coli K1 (EC)-induced anxiety/depression in mice. Oral or intraperitoneal administration of buspirone significantly suppressed stressor-induced anxiety/depression-like behaviors in the elevated plus maze, light/dark transition, tail suspension, and forced swimming tasks. Their treatments also reduced TNF-α expression and NF-κB+/Iba1+ cell population in the hippocampus and myeloperoxidase activity and NF-κB+/CD11c+ cell population in the colon. Buspirone treatments partially restored IS- or EC-induced gut microbiota perturbation such as β-diversity to those of normal control mice: they reduced the IS- or EC-induced gut Proteobacteria population. In particular, the anxiolytic activity of buspirone was positively correlated with the populations of Bacteroides and PAC001066_g in EC- or IS-exposed mice, while the populations of Lachnospiraceae, KE159660_g, LLKB_g, Helicobacter, and PAC001228_g were negatively correlated. The anti-depressant effect of buspirone was positively correlated with the Roseburia population. The fecal microbiota transplantations from buspirone-treated mice with IS-induced anxiety/depression or normal control mice suppressed IS-induced anxiety/depression-like behaviors and reduced hippocampal NF-κB+/Iba1+ and colonic NF-κB+/CD11c+ cell populations in the transplanted mice. Furthermore, they modified IS-induced perturbation of gut microbiota composition, particularly Proteobacteria, in the transplanted mice. In conclusion, buspirone alleviates IS as well as EC-induced anxiety/depression and colitis. It also suppresses associated neuroinflammation and modulates gut microbiota. Future studies can help to explain the relationship, if any, in the central and peripheral effects of buspirone.

2021 ◽  
pp. 1-12
Author(s):  
S.-W. Yun ◽  
J.-K. Kim ◽  
M.J. Han ◽  
D.-H. Kim

The gut microbiota communicates with the brain through microbiota-gut-brain (MGB) and hypothalamus-pituitary-adrenal (HPA) axes and other pathways. Excessive expression of interleukin (IL)-6 is closely associated with the occurrence of the psychiatric disorders depression and dementia. Therefore, to understand whether IL-6 expression-suppressing probiotics could alleviate psychiatric disorders, we isolated IL-6 expression-inhibiting Lacticaseibacillus paracasei (formerly Lactobacillus paracasei) NK112 from the human faecal bacteria strain collection (Neurobiota Research Center, Seoul, Korea) and examined its therapeutic effect for the depression and cognitive impairment in mice. C57 BL/6J mice with depression and cognitive impairment were prepared by exposure to Escherichia coli K1. Oral gavage of NK112 significantly alleviated K1-induced anxious, depressive, and memory-impaired behaviours in the elevated plus maze, tail-suspension and Y-maze tasks, IL-1β, IL-6, and tumour necrosis factor (TNF)-α expression, and nuclear factor kappa beta (NF-κB) activation in the hippocampus, while K1-suppressed brain-derived neurotrophic factor (BDNF) expression increased. Treatment with NK112 also improved K1-induced myeloperoxidase activity, IL-6 and TNF-α expression, and NF-κB activation in the colon and reduced K1-induced Proteobacteria population in the gut microbiota. Heat-killed NK112 and its lysate supernatant, and precipitate fractions also improved anxiety/depression, cognitive impairment, and colitis in mice. In conclusion, NK112, even if heat-killed or lysed, alleviated K1 stress-induced colitis, anxiety/depression, and cognitive impairment by suppressing IL-6, TNF-α, and BDNF expression through the regulation of gut microbiota and NF-κB activation.


2020 ◽  
Author(s):  
Hyo-Min Jang ◽  
Jeon-Kyung Kim ◽  
Min-Kyung Joo ◽  
Yun-Jung Shin ◽  
Kyung-Eon Lee ◽  
...  

Abstract BackgroundThe gut microbiota closely communicate with the brain through the microbiota-gut-brain axis. The interaction between gut microbiota may regulate the occurrence of neuropsychiatric disorders, including depression. Therefore, we transplanted the fecal microbiota of patients with inflammatory bowel disease (IBD) or their overpopulated gut bacteria into specific-pathogen-free or germ-free mice and examined their effects regarding the occurrence of colitis and anxiety/depression. ResultsFecal microbiota transplantations (FMTs) from patients with IBD with (/D+) or without depression (/D-) caused IBD-like colitis in the transplanted mice: they increased myeloperoxidase activity and NF-κB+/CD11c+ cell population in the colon. FMTs from patients with IBD/D+ caused anxiety-/depression-like behaviors and NF-κB+/Iba1+ and lipopolysaccharide (LPS)+/Iba1+ cell population and decreased the BDNF+/NeuN+ cell population in the hippocampus. FMTs from patients with IBD/D- caused anxiety-like, but not depression-like, behaviors. α-/β-diversities and composition of microbiota in the feces of patients with IBD (IBD-F) were different from those of healthy-control feces (HC-F). The Enterobacteriaceae and Enterococcaceae populations and fecal lipopolysaccharide levels were higher in IBD-F vs. HC-F. Moreover, the Enterococcaceae population was higher in IBD/D+-F vs. IBD/D--F, while the Bifidobacteria population was lower in IBD/D+-F. FMT from HC alleviated the IBD/D+-F-induced anxiety-/depression-like behaviors and colitis in the transplanted mice. Furthermore, it suppressed IBD/D+-F-induced Enterococcus sp. population in the feces. Enterobacteriaceae Klebsiella oxytoca, Klebsiella pneumoniae, Escherichia coli, and Cronobacter sakazakii abundant in IBD-F, singly or together, caused depression with colitis in germ-free and specific-pathogen-free mice, while Enterococcus faecium abundant in IBD/D+-F did not cause not anxiety/depression and colitis. However, the combination of Enterobacteriaceae with Enterococcus faecium synergistically deteriorated depression and colitis, while its combination with Bifidobacterium longum attenuated them. ConclusionThe interaction between gut microbiota Enterobacteriaceae, Enterococci, and Bifidobacteria may regulate the outbreak of anxiety/depression and IBD through the modulation of NF-κB-involved BDNF expression and gut microbiota. Enterococcus faecium, a probiotic strain, is a risk factor for the outbreak of anxiety/depression in patients with IBD.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hyo-Min Jang ◽  
Jeon-Kyung Kim ◽  
Min-Kyung Joo ◽  
Yoon-Jung Shin ◽  
Chang Kyun Lee ◽  
...  

AbstractGut dysbiosis is closely associated with the occurrence of inflammatory bowel disease (IBD) and psychiatric disorder. Here, to understand the difference of gut microbiota composition and physiological effect between IBD patients with (IBD/D+) or without depression (IBD/D−), we analyzed the fecal microbiota composition of patients with IBD with (/D+) or without depression (/D−) and healthy volunteers (HVs) and examined the effects of these fecal microbiota transplantations (FMTs) on the occurrence of systemic inflammation and anxiety/depression in mice. FMTs from patients with IBD/D+ or IBD/D− caused IBD-like colitis in the transplanted mice: they increased the myeloperoxidase activity, IL-1β and IL-6 expression, and NF-κB+/CD11c+ cell population in the colon. Transplantation of the IBD/D+ patient feces (IBD/D+-F) caused IBD-like colitis more strongly than that of IBD/D−-F. FMTs from patients with IBD/D+ also caused anxiety-/depression-like behaviors, increased the NF-κB+/Iba1+ and lipopolysaccharide (LPS)+/Iba1+ cell populations, and decreased the BDNF+/NeuN+ cell population in the hippocampus. They increased LPS levels in the blood. FMTs from patients with IBD/D− caused anxiety-like, but not depression-like, behaviors. α-/β-diversities and composition of gut microbiota in IBD-F were different from those of HV feces (HV-F). The Enterobacteriaceae and Enterococcaceae populations and LPS levels were higher in the IBD-F than in the HV-F. The Enterococcaceae population was higher in IBD/D+-F vs. IBD/D−-F. However, the transplantation of HV-F into mice previously transplanted with IBD/D+-F significantly reduced depression-like behaviors, NF-κB+/Iba1+ and LPS+/Iba1+ cell populations in the hippocampus, LPS levels in the feces and blood, and IL-1β expression in the colon. These findings suggest that the outbreak of depression/anxiety may be dependent on the systemic inflammation with a leaky gut through the gut dysbiosis-attributable overproduction of bacterial LPS and suppression of tight junction protein expression in patients with IBD.


Nutrients ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3422
Author(s):  
Eva Z. Reininghaus ◽  
Martina Platzer ◽  
Alexandra Kohlhammer-Dohr ◽  
Carlo Hamm ◽  
Sabrina Mörkl ◽  
...  

Gut microbiota are suspected to affect brain functions and behavior as well as lowering inflammation status. Therefore, an effect on depression has already been suggested by recent research. The aim of this randomized double-blind controlled trial was to evaluate the effect of probiotic treatment in depressed individuals. Within inpatient care, 82 currently depressed individuals were randomly assigned to either receive a multistrain probiotic plus biotin treatment or biotin plus placebo for 28 days. Clinical symptoms as well as gut microbiome were analyzed at the begin of the study, after one and after four weeks. After 16S rRNA analysis, microbiome samples were bioinformatically explored using QIIME, SPSS, R and Piphillin. Both groups improved significantly regarding psychiatric symptoms. Ruminococcus gauvreauii and Coprococcus 3 were more abundant and β-diversity was higher in the probiotics group after 28 days. KEGG-analysis showed elevated inflammation-regulatory and metabolic pathways in the intervention group. The elevated abundance of potentially beneficial bacteria after probiotic treatment allows speculations on the functionality of probiotic treatment in depressed individuals. Furthermore, the finding of upregulated vitamin B6 and B7 synthesis underlines the connection between the quality of diet, gut microbiota and mental health through the regulation of metabolic functions, anti-inflammatory and anti-apoptotic properties. Concluding, four-week probiotic plus biotin supplementation, in inpatient individuals with a major depressive disorder diagnosis, showed an overall beneficial effect of clinical treatment. However, probiotic intervention compared to placebo only differed in microbial diversity profile, not in clinical outcome measures.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Xin Yuan ◽  
Ruimin Chen ◽  
Kenneth L. McCormick ◽  
Ying Zhang ◽  
Xiangquan Lin ◽  
...  

Abstract Background The term “metabolically healthy obese (MHO)” denotes a hale and salutary status, yet this connotation has not been validated in children, and may, in fact, be a misnomer. As pertains to obesity, the gut microbiota has garnered attention as conceivably a nosogenic or, on the other hand, protective participator. Objective This study explored the characteristics of the fecal microbiota of obese Chinese children and adolescents of disparate metabolic statuses, and the associations between their gut microbiota and circulating proinflammatory factors, such as IL-6, TNF-α, lipopolysaccharide-binding protein (LBP), and a cytokine up-regulator and mediator, leptin. Results Based on weight and metabolic status, the 86 Chinese children (ages 5–15 years) were divided into three groups: metabolically healthy obese (MHO, n = 42), metabolic unhealthy obese (MUO, n = 23), and healthy normal weight controls (Con, n = 21). In the MUO subjects, the phylum Tenericutes, as well as the alpha and beta diversity, were significantly reduced compared with the controls. Furthermore, Phylum Synergistetes and genus Bacteroides were more prevalent in the MHO population compared with controls. For the MHO group, Spearman’s correlation analysis revealed that serum IL-6 positively correlated with genus Paraprevotella, LBP was positively correlated with genus Roseburia and Faecalibacterium, and negatively correlated with genus Lactobacillus, and leptin correlated positively with genus Phascolarctobacterium and negatively with genus Dialister (all p < 0.05). Conclusion Although there are distinct differences in the characteristic gut microbiota of the MUO population versus MHO, dysbiosis of gut microsystem is already extant in the MHO cohort. The abundance of some metabolism-related bacteria associates with the degree of circulating inflammatory compounds, suggesting that dysbiosis of gut microbiota, present in the MHO children, conceivably serves as a compensatory or remedial response to a surfeit of nutrients.


Author(s):  
Hanan Alatawi ◽  
Mahmoud Mosli ◽  
Omar I. Saadah ◽  
Vito Annese ◽  
Rashad Al-Hindi ◽  
...  

The largest microbial aggregation in the human body exists in the gastrointestinal tract. The microbiota in the host gastrointestinal tract comprises a diverse ecosystem, and the intestinal microbiota plays a vital role in maintaining gut homeostasis. This study aims to examine whether the gut microbiota influences unresponsiveness to anti-TNF-α treatments in primary nonresponder patients, and consequently identify the responsible microbes as biomarkers of unresponsiveness. Stool samples were collected from a cohort of patients with an established diagnosis of IBD, either ulcerative colitis (UC) or Crohn’s disease (CD), following completion of the induction phase of anti TNF therapy. 16S rRNA sequencing analysis was used to examine the pattern of microbiota communities in fecal samples. The quality and quantity of fecal microbiota were compared in responder and primary nonresponder IBD patients following anti-TNF-α therapy. As per our hypothesis, a difference in gut microbiome composition between the two patient subgroups was observed. A decreased abundance of short-chain fatty acid (SCFA)-producing bacteria, including Anaerostipes, Coprococcus, Lachnospira, Roseburia, and Ruminococcus, was detected in non-responsive patients, which was the hallmark of dysbiosis. Biomarkers of dysbiosis that were identified as predictors of clinical nonresponse, included Klebsiella, Eubacteriaceae, RF32, Bifidobacterium_animalis, and Muribaculaceae—previously known as S24-7. Signature biomarkers showed dramatic alteration in the composition of gut microbiota in patients who demonstrated primary nonresponse to anti-TNF-α agents. Dysbiosis, with features including a dropped biodiversity, augmentation in opportunistic pathogenic microbiota, and a lack of SCFA-producing bacteria, is a prominent feature of the microbiome of primary nonresponders to anti-TNF-α therapy.


2021 ◽  
Author(s):  
Suyan Li ◽  
Fenyan Zhang ◽  
Yiguang Lin ◽  
Xiaoli Niu ◽  
Jian Lv ◽  
...  

Abstract Background Accumulating evidence suggests that the intestinal flora is involved in many neurodegenerative diseases. Sepsis can lead to severe intestinal flora imbalance and brain dysfunction. In this study, we investigated Sennoside A may relieve lipopolysaccharide(LPS)-associated encephalopathy via its effect on the gut microbiota in rats. Methods Adult male Sprague-Dawley (SD) rats and germ free (GF) rats were used. The ordinary and germ free SD rats were adopted as a LPS-associated encephalopathy model with or without Sennoside A administration. We investigated gut microbiota diversity and structure, conducted electroencephalograms (EEG) and measured the levels of TNF-α, IL-1β and IL-6 in the cortexes of Sprague Dawley (SD) rats with or without Sennoside A administration. Horizontal fecal microbiota transplantation (FMT) and germ-free rats were used to confirm the important roles of gut microbiota in the mitigation of LPS-associated encephalopathy in rats after Sennoside A supplementation. Results We found that Sennoside A treatment markedly improved brain function in septic rats including decreased ratios of abnormal EEG and lowered levels of TNF-α, IL-1β, and IL-6 in the rat cortexes. While the gut microbiota changed in septic SD rats, Sennoside A improved gut microbial composition, which might mediate its brain protective effects in sepsis. Sennoside A also reduced inflammation in the cortexes of septic rats via gut microbiota improvement. In germ-free rats that received lipopolysaccharide(LPS),Sennoside A could not lower the ratios of abnormal EEG, and could not alleviate TNF-α, IL-1β, and IL-6 levels in the rats’ cortexes. FMT lowered the ratios of abnormal EEG and alleviate TNF-α, IL-1β, and IL-6 levels in rats’ cortexes, which confirmed our hypothesis that the effect of Sennoside A on the improvement of LPS-associated encephalopathy through gut microbiota. Conclusion Our data confirm our hypothesis that Sennoside A likely exerts its brain protective effects through gut microbiota alteration.


Nutrients ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 901 ◽  
Author(s):  
Sang-Kap Han ◽  
Min-Kyung Joo ◽  
Jeon-Kyung Kim ◽  
Woonhee Jeung ◽  
Heerim Kang ◽  
...  

Gut dysbiosis is closely connected with the outbreak of psychiatric disorders with colitis. Bifidobacteria-fermented red ginseng (fRG) increases the absorption of ginsenoside Rd and protopanxatriol into the blood in volunteers and mice. fRG and Rd alleviates 2,4,6-trinitrobenzenesulfonic acid-induced colitis in mice. Therefore, to understand the gut microbiota-mediated mechanism of fRG against anxiety/depression, we examined the effects of red ginseng (RG), fRG, ginsenoside Rd, and protopanaxatriol on the occurrence of anxiety/depression, colitis, and gut dysbiosis in mice. Mice with anxiety/depression were prepared by being exposed to two stressors, immobilization stress (IS) or Escherichia coli (EC). Treatment with RG and fRG significantly mitigated the stress-induced anxiety/depression-like behaviors in elevated plus maze, light-dark transition, forced swimming (FST), and tail suspension tasks (TST) and reduced corticosterone levels in the blood. Their treatments also suppressed the stress-induced NF-κB activation and NF-κB+/Iba1+ cell population in the hippocampus, while the brain-derived neurotrophic factor (BDNF) expression and BDNF+/NeuN+ cell population were increased. Furthermore, treatment with RG or fRG suppressed the stress-induced colitis: they suppressed myeloperoxidase activity, NF-κB activation, and NF-κB+/CD11c+ cell population in the colon. In particular, fRG suppressed the EC-induced depression-like behaviors in FST and TST and colitis more strongly than RG. fRG treatment also significantly alleviated the EC-induced NF-κB+/Iba1+ cell population and EC-suppressed BDNF+/NeuN+ cell population in the hippocampus more strongly than RG. RG and fRG alleviated EC-induced gut dysbiosis: they increased Bacteroidetes population and decreased Proteobacteria population. Rd and protopanaxatriol also alleviated EC-induced anxiety/depression and colitis. In conclusion, fRG and its constituents Rd and protopanaxatriol mitigated anxiety/depression and colitis by regulating NF-κB-mediated BDNF expression and gut dysbiosis.


2021 ◽  
Author(s):  
Xin Yuan ◽  
Ruimin Chen ◽  
Kenneth L. McCormick ◽  
Ying Zhang ◽  
Xiangquan Lin ◽  
...  

Abstract Background The term “metabolically healthy obese (MHO)” denotes a hale and salutary status, yet this connotation has not been validated in children, and may, in fact, be a misnomer. As pertains to obesity, the gut microbiota has garnered attention as conceivably a nosogenic or, on the other hand, protective participator.Objective This study explored the characteristics of the fecal microbiota of obese Chinese children and adolescents of disparate metabolic statuses, and the associations between their gut microbiota and circulating proinflammatory factors, such as IL-6, TNF-α, lipopolysaccharide-binding protein (LBP), and a cytokine up-regulator and mediator, leptin. Results Based on weight and metabolic status, the 86 Chinese children (ages 5-15 years) were divided into three groups: metabolically healthy obese (MHO, n=42), metabolic unhealthy obese (MUO, n=23), and healthy normal weight controls (Con, n=21). In the MUO subjects, the phylum Tenericutes, as well as the alpha and beta diversity, were significantly reduced compared with the controls. Furthermore, Phylum Synergistetes and genus Bacteroides were more prevalent in the MHO population compared with controls. For the MHO group, Spearman’s correlation analysis revealed that serum IL-6 positively correlated with genus Paraprevotella, LBP was positively correlated with genus Roseburia and Faecalibacterium, and negatively correlated with genus Lactobacillus, and leptin correlated positively with genus Phascolarctobacterium and negatively with genus Dialister (all p<0.05).Conclusion Although there are distinct differences in the characteristic gut microbiota of the MUO population versus MHO, dysbiosis of gut microsystem is already extant in the MHO cohort. The abundance of some metabolism-related bacteria associates with the degree of circulating inflammatory compounds, suggesting that dysbiosis of gut microbiota, present in the MHO children, conceivably serves as a compensatory or remedial response to a surfeit of nutrients.


Sign in / Sign up

Export Citation Format

Share Document