scholarly journals Time-resolved nanosecond optical pyrometry of the vapor to plasma transitions in exploding bridgewires

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
T. A. Feagin ◽  
E. M. Heatwole ◽  
P. J. Rae ◽  
R. C. Rettinger ◽  
G. R. Parker

AbstractElectrically exploded wires find uses throughout high-energy physics. For example, they are commonly used as high-temperature sources, X-ray generators, and in precision timing detonators. However, the detailed and complete physics that occurs is complex and still poorly understood. A full mechanistic description of these complex phenomena is beyond the scope of a single paper. Instead, we focus on the formation of metal vapor and its transition to plasma. This single transition is commonly assumed to comprise “bridge-burst”. We use a suite of diagnostics including a novel, fiber-based, high-speed, optical pyrometer to better characterize this transition. The primary finding from this project is that peak light output from an exploding wire does not temporally match the peak temperature. Additionally, it is found that peak light does not align with peak bridge-burst voltage and that the peak temperature is not voltage-dependent. These findings are non-intuitive and will allow for the correction of false assumptions previously made about this topic.

2010 ◽  
Vol 1 (SRMS-7) ◽  
Author(s):  
David Pennicard ◽  
Heinz Graafsma ◽  
Michael Lohmann

The new synchrotron light source PETRA-III produced its first beam last year. The extremely high brilliance of PETRA-III and the large energy range of many of its beamlines make it useful for a wide range of experiments, particularly in materials science. The detectors at PETRA-III will need to meet several requirements, such as operation across a wide dynamic range, high-speed readout and good quantum efficiency even at high photon energies. PETRA-III beamlines with lower photon energies will typically be equipped with photon-counting silicon detectors for two-dimensional detection and silicon drift detectors for spectroscopy and higher-energy beamlines will use scintillators coupled to cameras or photomultiplier tubes. Longer-term developments include ‘high-Z’ semiconductors for detecting high-energy X-rays, photon-counting readout chips with smaller pixels and higher frame rates and pixellated avalanche photodiodes for time-resolved experiments.


Electronics ◽  
2021 ◽  
Vol 10 (20) ◽  
pp. 2546
Author(s):  
Alessandro Gabrielli ◽  
Fabrizio Alfonsi ◽  
Alberto Annovi ◽  
Alessandra Camplani ◽  
Alessandro Cerri

In recent years, the technological node used to implement FPGA devices has led to very high performance in terms of computational capacity and in some applications these can be much more efficient than CPUs or other programmable devices. The clock managers and the enormous versatility of communication technology through digital transceivers place FPGAs in a prime position for many applications. For example, from real-time medical image analysis to high energy physics particle trajectory recognition, where computation time can be crucial, the benefits of using frontier FPGA capabilities are even more relevant. This paper shows an example of FPGA hardware implementation, via a firmware design, of a complex analytical algorithm: The Hough transform. This is a mathematical spatial transformation used here to facilitate on-the-fly recognition of the trajectories of ionising particles as they pass through the so-called tracker apparatus within high-energy physics detectors. This is a general study to demonstrate that this technique is not only implementable via software-based systems, but can also be exploited using consumer hardware devices. In this context the latter are known as hardware accelerators. In this article in particular, the Xilinx UltraScale+ FPGA is investigated as it belongs to one of the frontier family devices on the market. These FPGAs make it possible to reach high-speed clock frequencies at the expense of acceptable energy consumption thanks to the 14 nm technological node used by the vendor. These devices feature a huge number of gates, high-bandwidth memories, transceivers and other high-performance electronics in a single chip, enabling the design of large, complex and scalable architectures. In particular the Xilinx Alveo U250 has been investigated. A target frequency of 250 MHz and a total latency of 30 clock periods have been achieved using only the 17 ÷ 53% of LUTs, the 8 ÷ 12% of DSPs, the 1 ÷ 3% of Block Rams and a Flip Flop occupancy range of 9 ÷ 28%.


2015 ◽  
Vol 7 (3) ◽  
pp. 1970-1975
Author(s):  
Dmitriy Beznosko

This paper presents the physical concept and test results of sample data of the high-speed hardware true random number generator design based on typically used for High Energy Physics hardware. Main features of this concept are the high speed of the true random numbers generation (tens of Mbt/s), miniature size and estimated lower production cost. This allows the use of such a device not only in large companies and government offices but for the end-user data cryptography, in classrooms, in scientific Monte-Carlo simulations, computer games and any other place where large number of true random numbers is required. The physics of the operations principle of using a Geiger-mode avalanche photo detector is discussed and the high quality of the data collected is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document