scholarly journals A sequence variant in the diacylglycerol O-acyltransferase 2 gene influences palmitoleic acid content in pig muscle

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Emma Solé ◽  
Roger Ros-Freixedes ◽  
Marc Tor ◽  
Ramona N. Pena ◽  
Joan Estany

AbstractThe bulk of body fat in mammals is in the form of triacylglycerol. Diacylglycerol O-acyltransferase 2 (DGAT2) catalyses the terminal step in triacylglycerol synthesis. The proximity of DGAT2 with stearoyl-CoA desaturase (SCD) in the endoplasmic reticulum may facilitate provision of de novo SCD-mediated fatty acids as substrate for DGAT2. Here, we first searched for sequence variants in the DGAT2 gene to then validate their effect on fat content and fatty acid composition in muscle, subcutaneous fat and liver of 1129 Duroc pigs. A single nucleotide polymorphism in exon 9 (ss7315407085 G > A) was selected as a tag variant for the 33 sequence variants identified in the DGAT2 region. The DGAT2-G allele increased DGAT2 expression in muscle and had a positive impact on muscular C14 and C16 fatty acids at the expense of C18 fatty acids. Although there was no evidence for an interaction of DGAT2 with functional SCD genotypes, pigs carrying the DGAT2-G allele had proportionally more palmitoleic acid relative to palmitic acid. Our findings indicate that DGAT2 preferentially uptakes shorter rather than longer-chain fatty acids as substrate, especially if they are monounsaturated, and confirm that fatty acid metabolism in pigs is subjected to subtle tissue-specific genetic regulatory mechanisms.

1984 ◽  
Vol 220 (2) ◽  
pp. 521-527 ◽  
Author(s):  
H O Hansen ◽  
I Grunnet ◽  
J Knudsen

ATP alone had no effect on incorporation of fatty acids synthesized de novo and membrane-bound diacylglycerol into triacylglycerol. Combined addition of ATP and Mg2+ totally inhibits incorporation of fatty acids synthesized de novo and stimulated incorporation of membrane-bound diacylglycerol. ATP, Mg2+ and glycerol 3-phosphate stimulate incorporation of fatty acids synthesized de novo into triacylglycerol, but inhibited the incorporation of membrane-bound diacylglycerol. Diacylglycerol generated in situ was shown to be superior to diacylglycerols preloaded on the membrane as substrate for the diacylglycerol acyltransferase. A model is proposed to explain the effect of absorbed exogenous fatty acid on fatty acid synthesis de novo in goat mammary gland.


1984 ◽  
Vol 220 (2) ◽  
pp. 513-519 ◽  
Author(s):  
H O Hansen ◽  
I Grunnet ◽  
J Knudsen

Goat mammary-gland microsomal fraction by itself induces synthesis of medium-chain-length fatty acids by goat mammary fatty acid synthetase and incorporates short- and medium-chain fatty acids into triacylglycerol. Addition of ATP in the absence or presence of Mg2+ totally inhibits triacylglycerol synthesis from short- and medium-chain fatty acids, and severely inhibits synthesis de novo of medium-chain fatty acids. The inhibition by ATP of fatty acid synthesis and triacylglycerol synthesis de novo can be relieved by glycerol 3-phosphate. The effect of ATP could not be mimicked by the non-hydrolysable ATP analogue, adenosine 5′-[beta, gamma-methylene]triphosphate and could not be shown to be caused by inhibition of the diacylglycerol acyltransferase by a phosphorylation reaction. Possible explanations for the mechanism of the inhibition by ATP are discussed, and a hypothetical model for its action is outlined.


1991 ◽  
Vol 275 (1) ◽  
pp. 87-92 ◽  
Author(s):  
G F Gibbons ◽  
F J Burnham

The mass of very-low-density-lipoproteins (VLDL) triacylglycerol secreted from isolated hepatocytes was dependent on the nutritional state of the donor rats, and declined in the order sucrose-fed greater than chow-fed greater than polyunsaturated-fat-fed greater than starved. This was the case irrespective of the presence or absence of exogenous oleate. The contribution of newly synthesized fatty acids to the total mass of VLDL triacylglycerol also declined in the above order, and reflected the relative rates of fatty acid synthesis de novo in each of the groups. The contribution of exogenous oleate to VLDL triacylglycerol varied in a manner similar to that for newly synthesized fatty acid. However, the contribution either of exogenous oleate or of newly synthesized fatty acid never exceeded 17-20% of the total VLDL triacylglycerol fatty acid even in the sucrose-fed animals. The increased contribution of newly synthesized fatty acids in the sucrose-fed group was not sufficient to account for the increase in the total mass of VLDL triacylglycerol secreted. These results suggest that: (a) changes in the rate of triacylglycerol secretion are not a direct consequence of variations in the rate of fatty acid synthesis de novo; (b) in the short term, most of the triacylglycerol required for VLDL assembly and secretion is derived from an intracellular storage source: (c) the distribution of newly synthesized triacylglycerol between the cytosolic and secretory pools was similar irrespective of the source of fatty acids (i.e. synthesized de novo or exogenous).


Author(s):  
Roberta Scanferlato ◽  
Massimo Bortolotti ◽  
Anna Sansone ◽  
Chryssostomos Chatgilialoglu ◽  
Letizia Polito ◽  
...  

Palmitic acid metabolism involves delta-9 and delta-6 desaturase enzymes forming palmitoleic acid (9cis-16:1; n-7 series) and sapienic acid (6cis-16:1; n-10 series), respectively. The corresponding biological consequences and lipidomic research on these positional MUFA isomers are under development. Furthermore, sapienic acid can bring to the de novo synthesis of the n-10 polyunsaturated fatty acid (PUFA) sebaleic acid (5cis,8cis-18:2), but such transformations in cancer cells are not known. The model of Caco-2 cell line was used to monitor sapienic acid supplementation (150 and 300 μM) and evidence the formation of n-10 fatty acids as well as their incorporation at levels of membrane phospholipids and triglycerides. Comparison with palmitoleic and palmitic acids evidenced that lipid remodeling was influenced by the type of fatty acid and positional isomer, with increase of 8cis-18:1, n-10 PUFA and decrease of saturated fats in case of sapienic acid. Cholesteryl esters were formed only in case of sapienic acid. EC50 of sapienic acid (232.3 μM at 96 hrs) was the highest found among the tested fatty acids, thus influencing cell viability that was only reduced at 25% at 300 μM, whereas palmitoleic acid induced cell death. Two-photon fluorescent microscopy with Laurdan as a fluorescent dye provided information on membrane fluidity, highlighting that sapienic acid increases the distribution of fluid regions, probably connected with the formation of 8cis-18:1 and the n-10 PUFA in cell lipidome. Our results bring evidence for MUFA positional isomers and de novo PUFA synthesis for developing lipidomic analysis and cancer research.


Author(s):  
Aykut Burgut

The polyunsaturated fatty acids (PUFA) of lipids in muscle of sardine were known as unstable to oxidation. Propolis is a natural compounds produced by honey bees from substances collected from parts of plants, buds, and exudates. Nowadays, the particular attention has been attributed to propolis underlying their antioxidant properties due to the presence of the flavonoids, phenolic acids, and ethers. The impact of water and ethanolic extract of propolis at doses of 0.4 and 0.8% on fatty acid changes of vacuum packaged sardine fillets were investigated during chill storage. The main fatty acids in sardine fillets were palmitic acid (C16:0), palmitoleic acid (C16:1), myristic acid (C14:0), eicosapentaenoic acid (EPA, C20:5n3) and docosahexaenoic acid (DHA, C22:6 n3), respectively. There was no significant differences in EPA and DHA between control and treated groups during storage apart from 4 and 11th day. Initial n6/n3 ratio in sardine fillet was 0.17. Group treated with 0.4 propolis ethanolic extract comprised lower n6/n3 ratio at 4, 11 and 13th days than that of other groups. Although the effects of propolis extracts on fatty acid composition of fish were variable, application of propolis ethanolic and water extracts on fish fillets at doses of 0.8% had a positive impact due to lead a better oxidative stability of PUFA content.


1995 ◽  
Vol 269 (2) ◽  
pp. E247-E252 ◽  
Author(s):  
H. O. Ajie ◽  
M. J. Connor ◽  
W. N. Lee ◽  
S. Bassilian ◽  
E. A. Bergner ◽  
...  

To determine the contributions of preexisting fatty acid, de novo synthesis, and chain elongation in long-chain fatty acid (LCFA) synthesis, the synthesis of LCFAs, palmitate (16:0), stearate (18:0), arachidate (20:0), behenate (22:0), and lignocerate (24:0), in the epidermis, liver, and spinal cord was determined using deuterated water and mass isotopomer distribution analysis in hairless mice and Sprague-Dawley rats. Animals were given 4% deuterated water for 5 days or 8 wk in their drinking water. Blood was withdrawn at the end of these times for the determination of deuterium enrichment, and the animals were killed to isolate the various tissues for lipid extraction for the determination of the mass isotopomer distributions. The mass isotopomer distributions in LCFA were incompatible with synthesis from a single pool of primer. The synthesis of palmitate, stearate, arachidate, behenate, and lignocerate followed the expected biochemical pathways for the synthesis of LCFAs. On average, three deuterium atoms were incorporated for every addition of an acetyl unit. The isotopomer distribution resulting from chain elongation and de novo synthesis can be described by the linear combination of two binomial distributions. The proportions of preexisting, chain elongation, and de novo-synthesized fatty acids as a percentage of the total fatty acids were determined using multiple linear regression analysis. Fractional synthesis was found to vary, depending on the tissue type and the fatty acid, from 47 to 87%. A substantial fraction (24-40%) of the newly synthesized molecules was derived from chain elongation of unlabeled (recycled) palmitate.


Author(s):  
E-Ming Rau ◽  
Inga Marie Aasen ◽  
Helga Ertesvåg

Abstract Thraustochytrids are oleaginous marine eukaryotic microbes currently used to produce the essential omega-3 fatty acid docosahexaenoic acid (DHA, C22:6 n-3). To improve the production of this essential fatty acid by strain engineering, it is important to deeply understand how thraustochytrids synthesize fatty acids. While DHA is synthesized by a dedicated enzyme complex, other fatty acids are probably synthesized by the fatty acid synthase, followed by desaturases and elongases. Which unsaturated fatty acids are produced differs between different thraustochytrid genera and species; for example, Aurantiochytrium sp. T66, but not Aurantiochytrium limacinum SR21, synthesizes palmitoleic acid (C16:1 n-7) and vaccenic acid (C18:1 n-7). How strain T66 can produce these fatty acids has not been known, because BLAST analyses suggest that strain T66 does not encode any Δ9-desaturase-like enzyme. However, it does encode one Δ12-desaturase-like enzyme. In this study, the latter enzyme was expressed in A. limacinum SR21, and both C16:1 n-7 and C18:1 n-7 could be detected in the transgenic cells. Our results show that this desaturase, annotated T66Des9, is a Δ9-desaturase accepting C16:0 as a substrate. Phylogenetic studies indicate that the corresponding gene probably has evolved from a Δ12-desaturase-encoding gene. This possibility has not been reported earlier and is important to consider when one tries to deduce the potential a given organism has for producing unsaturated fatty acids based on its genome sequence alone. Key points • In thraustochytrids, automatic gene annotation does not always explain the fatty acids produced. • T66Des9 is shown to synthesize palmitoleic acid (C16:1 n-7). • T66des9 has probably evolved from Δ12-desaturase-encoding genes.


1977 ◽  
Vol 89 (3) ◽  
pp. 575-582 ◽  
Author(s):  
W. M. F. Leat

SummaryAberdeen Angus and Friesian cattle were reared from 4 months of age to slaughter weight at 18–24 months on either high-barley or high-hay diets. Samples of subcutaneous fat were taken by biopsy at 3 monthly intervals, and the degree of fatness of each animal was estimated ultrasonically prior to slaughter, and by visual inspection of the carcasses.The barley-fed animals gained weight more rapidly, and fattened more quickly than the hay-fed animals with the Angus being fatter than the Friesian at the same age. The percentage stearic acid (C18:0) in subcutaneous fat decreased with age and was replaced by octadecenoic acid (C18:l) and hexadecenoic acid (C16:l), these changes being more rapid in barley-fed than in hay-fed animals. At the same degree of fatness the depot fats of the Friesians were more unsaturated than those of the Angus, and in both breeds the fatter the animal the more unsaturated was its depot fat.In the hay-fed cattle the percentage C16:0 in subcutaneous fat increased during the last half of the experiment and at slaughter the percentage C16:0 was significantly higher, and C18:l significantly lower, in all depot fats compared with those of the barley-fed animals.It is concluded that the fatty acid composition of bovine depot fats is modulated by the degree of fattening, and can be affected by diet.


1972 ◽  
Vol 50 (10) ◽  
pp. 1263-1267 ◽  
Author(s):  
K. R. Penner ◽  
J. S. Barlow

The fatty acid composition of newly emerged Ips paraconfusus Lanier shows no sexual dimorphism and is approximately as follows: C14:0, 0.5%; C16:0, 23.0%; C16:1, 6%; C18:0, 3%; C18:1, 55%; C18:2, 9%; C18:3, 2%. Both sexes, but particularly the female, use up fatty acids, particularly the monounsaturated acids, during reproduction. Isotope from 1-14C-acetate injected into newly emerged females appeared in all saturated and monounsaturated fatty acids within 30 min. There was evidence of de novo synthesis of C14:0 and C16:0, chain elongation of C16:0 to C18:0, and desaturation of C16:0 and C18:0 to yield C16:1 and C18:1 respectively.


1974 ◽  
Vol 142 (3) ◽  
pp. 611-618 ◽  
Author(s):  
D. Michael W. Salmon ◽  
Neil L. Bowen ◽  
Douglas A. Hems

1. Fatty acid synthesis de novo was measured in the perfused liver of fed mice. 2. The total rate, measured by the incorporation into fatty acid of3H from3H2O (1–7μmol of fatty acid/h per g of fresh liver), resembled the rate found in the liver of intact mice. 3. Perfusions with l-[U-14C]lactic acid and [U-14C]glucose showed that circulating glucose at concentrations less than about 17mm was not a major carbon source for newly synthesized fatty acid, whereas lactate (10mm) markedly stimulated fatty acid synthesis, and contributed extensive carbon to lipogenesis. 4. The identification of 50% of the carbon converted into newly synthesized fatty acid lends further credibility to the use of3H2O to measure hepatic fatty acid synthesis. 5. The total rate of fatty acid synthesis, and the contribution of glucose carbon to lipogenesis, were directly proportional to the initial hepatic glycogen concentration. 6. The proportion of total newly synthesized lipid that was released into the perfusion medium was 12–16%. 7. The major products of lipogenesis were saturated fatty acids in triglyceride and phospholipid. 8. The rate of cholesterol synthesis, also measured with3H2O, expressed as acetyl residues consumed, was about one-fourth of the basal rate of fatty acid synthesis. 9. These results are discussed in terms of the carbon sources of hepatic newly synthesized fatty acids, and the effect of glucose, glycogen and lactate in stimulating lipogenesis, independently of their role as precursors.


Sign in / Sign up

Export Citation Format

Share Document