scholarly journals Conversion from epithelial to partial-EMT phenotype by Fusobacterium nucleatum infection promotes invasion of oral cancer cells

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wenhua Shao ◽  
Natsumi Fujiwara ◽  
Yasuhiro Mouri ◽  
Satoru Kisoda ◽  
Kayo Yoshida ◽  
...  

Abstract The ability of cancer cells to undergo partial-epithelial mesenchymal transition (p-EMT), rather than complete EMT, poses a higher metastatic risk. Although Fusobacterium nucleatum mainly inhabits in oral cavity, attention has been focused on the F. nucleatum involvement in colorectal cancer development. Here we examined the p-EMT regulation by F. nucleatum in oral squamous cell carcinoma (OSCC) cells. We cultured OSCC cells with epithelial, p-EMT or EMT phenotype with live or heat-inactivated F. nucleatum. Expression of the genes involved in epithelial differentiation, p-EMT and EMT were examined in OSCC cells after co-culture with F. nucleatum by qPCR. Cell growth and invasion of OSCC cells were also examined. Both live and heat-inactivated F. nucleatum upregulated the expression of p-EMT-related genes in OSCC cells with epithelial phenotype, but not with p-EMT or EMT phenotype. Moreover, F. nucleatum promoted invasion of OSCC cells with epithelial phenotype. Co-culture with other strains of bacteria other than Porphyromonas gingivalis did not alter p-EMT-related genes in OSCC cells with epithelial phenotype. F. nucleatum infection may convert epithelial to p-EMT phenotype via altering gene expression in OSCC. Oral hygiene managements against F. nucleatum infection may contribute to reduce the risk for an increase in metastatic ability of OSCC.

Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1833
Author(s):  
Tsai-Tsen Liao ◽  
Wei-Chung Cheng ◽  
Chih-Yung Yang ◽  
Yin-Quan Chen ◽  
Shu-Han Su ◽  
...  

Cell migration is critical for regional dissemination and distal metastasis of cancer cells, which remain the major causes of poor prognosis and death in patients with colorectal cancer (CRC). Although cytoskeletal dynamics and cellular deformability contribute to the migration of cancer cells and metastasis, the mechanisms governing the migratory ability of cancer stem cells (CSCs), a nongenetic source of tumor heterogeneity, are unclear. Here, we expanded colorectal CSCs (CRCSCs) as colonospheres and showed that CRCSCs exhibited higher cell motility in transwell migration assays and 3D invasion assays and greater deformability in particle tracking microrheology than did their parental CRC cells. Mechanistically, in CRCSCs, microRNA-210-3p (miR-210) targeted stathmin1 (STMN1), which is known for inducing microtubule destabilization, to decrease cell elasticity in order to facilitate cell motility without affecting the epithelial–mesenchymal transition (EMT) status. Clinically, the miR-210-STMN1 axis was activated in CRC patients with liver metastasis and correlated with a worse clinical outcome. This study elucidates a miRNA-oriented mechanism regulating the deformability of CRCSCs beyond the EMT process.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 801
Author(s):  
Joyce Y. Buikhuisen ◽  
Patricia M. Gomez Barila ◽  
Arezo Torang ◽  
Daniëlle Dekker ◽  
Joan H. de Jong ◽  
...  

Colorectal cancer (CRC) is a heterogeneous disease that can currently be subdivided into four distinct consensus molecular subtypes (CMS) based on gene expression profiling. The CMS4 subtype is marked by high expression of mesenchymal genes and is associated with a worse overall prognosis compared to other CMSs. Importantly, this subtype responds poorly to the standard therapies currently used to treat CRC. We set out to explore what regulatory signalling networks underlie the CMS4 phenotype of cancer cells, specifically, by analysing which kinases were more highly expressed in this subtype compared to others. We found AKT3 to be expressed in the cancer cell epithelium of CRC specimens, patient derived xenograft (PDX) models and in (primary) cell cultures representing CMS4. Importantly, chemical inhibition or knockout of this gene hampers outgrowth of this subtype, as AKT3 controls expression of the cell cycle regulator p27KIP1. Furthermore, high AKT3 expression was associated with high expression of epithelial-mesenchymal transition (EMT) genes, and this observation could be expanded to cell lines representing other carcinoma types. More importantly, this association allowed for the identification of CRC patients with a high propensity to metastasise and an associated poor prognosis. High AKT3 expression in the tumour epithelial compartment may thus be used as a surrogate marker for EMT and may allow for a selection of CRC patients that could benefit from AKT3-targeted therapy.


2020 ◽  
Vol 9 ◽  
pp. 1812
Author(s):  
Solmaz Rahmani Barouji ◽  
Arman Shahabi ◽  
Mohammadali Torbati ◽  
Seyyed Mohammad Bagher Fazljou ◽  
Ahmad Yari Khosroushahi

Background: Mummy (Iranian pure shilajit) is a remedy with possessing anti-inflammatory, antioxidant and anticancer activities. This study aimed to examine mummy effects on epithelial-mesenchymal transition (EMT) and invasiveness of MCF-7 and MDA-MB-231 breast cancer (BC) cell lines with underlying its mechanism. Materials and Methods: The dose-dependent inhibitory effect of the mummy on cell proliferation in vitro was determined using the MTT assay.  Flow cytometry and 4’,6-diamidino-2-phenylindole dihydrochloride staining were respectively used for quantitative and qualitative analysis of cellular apoptosis, and gene expression analysis was conducted using real-time PCR. Results: MDA-MB-231 showed more sensitivity than the MCF-7 cell line to the anticancer activity of mummy, while mummy did not exhibit significant cell cytotoxicity against human normal cells (MCF-10A). The gene expression profile demonstrated a significant decrease in TGF-β1, TGF-βR1, TWIST1, NOTCH1, CTNNB1, SRC along with an increase in E-cadherin mRNA levels in mummy treated cells compared to the untreated control group (P≤0.05). Conclusion: Mummy triggers inhibition of EMT and metastasis in breast cancer cells mainly through the downregulation of TGFβ1 activity, and more studies required to find its specific anticancer activity with details. [GMJ.2020;9:e1812]


Sign in / Sign up

Export Citation Format

Share Document