scholarly journals Soft robotic constrictor for in vitro modeling of dynamic tissue compression

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jungwook Paek ◽  
Joseph W. Song ◽  
Ehsan Ban ◽  
Yuma Morimitsu ◽  
Chinedum O. Osuji ◽  
...  

AbstractHere we present a microengineered soft-robotic in vitro platform developed by integrating a pneumatically regulated novel elastomeric actuator with primary culture of human cells. This system is capable of generating dynamic bending motion akin to the constriction of tubular organs that can exert controlled compressive forces on cultured living cells. Using this platform, we demonstrate cyclic compression of primary human endothelial cells, fibroblasts, and smooth muscle cells to show physiological changes in their morphology due to applied forces. Moreover, we present mechanically actuatable organotypic models to examine the effects of compressive forces on three-dimensional multicellular constructs designed to emulate complex tissues such as solid tumors and vascular networks. Our work provides a preliminary demonstration of how soft-robotics technology can be leveraged for in vitro modeling of complex physiological tissue microenvironment, and may enable the development of new research tools for mechanobiology and related areas.

Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2278 ◽  
Author(s):  
Fei Xing ◽  
Zhou Xiang ◽  
Pol Maria Rommens ◽  
Ulrike Ritz

Vascularization in bone tissues is essential for the distribution of nutrients and oxygen, as well as the removal of waste products. Fabrication of tissue-engineered bone constructs with functional vascular networks has great potential for biomimicking nature bone tissue in vitro and enhancing bone regeneration in vivo. Over the past decades, many approaches have been applied to fabricate biomimetic vascularized tissue-engineered bone constructs. However, traditional tissue-engineered methods based on seeding cells into scaffolds are unable to control the spatial architecture and the encapsulated cell distribution precisely, which posed a significant challenge in constructing complex vascularized bone tissues with precise biomimetic properties. In recent years, as a pioneering technology, three-dimensional (3D) bioprinting technology has been applied to fabricate multiscale, biomimetic, multi-cellular tissues with a highly complex tissue microenvironment through layer-by-layer printing. This review discussed the application of 3D bioprinting technology in the vascularized tissue-engineered bone fabrication, where the current status and unique challenges were critically reviewed. Furthermore, the mechanisms of vascular formation, the process of 3D bioprinting, and the current development of bioink properties were also discussed.


Human Cell ◽  
2018 ◽  
Vol 32 (2) ◽  
pp. 114-124
Author(s):  
Miho Watanabe ◽  
Akihiro Ohyama ◽  
Hiroshi Ishikawa ◽  
Akira Tanaka

Human Cell ◽  
2019 ◽  
Vol 32 (3) ◽  
pp. 401-401 ◽  
Author(s):  
Miho Watanabe ◽  
Akihiro Ohyama ◽  
Hiroshi Ishikawa ◽  
Akira Tanaka

2016 ◽  
Vol 311 (1) ◽  
pp. H299-H309 ◽  
Author(s):  
Zhichao Zhou ◽  
Ihsan Chrifi ◽  
Yanjuan Xu ◽  
John Pernow ◽  
Dirk J. Duncker ◽  
...  

Uridine adenosine tetraphosphate (Up4A), a dinucleotide, exerts vascular influence via purinergic receptors (PR). We investigated the effects of Up4A on angiogenesis and the putative PR involved. Tubule formation assay was performed in a three-dimensional system, in which human endothelial cells were cocultured with pericytes with various Up4A concentrations for 5 days. Expression of PR subtypes and angiogenic factors was assessed in human endothelial cells with and without P2Y6R antagonist. No difference in initial tubule formation was detected between Up4A stimulation and control conditions at day 2. In contrast, a significant increase in vascular density in response to Up4A was observed at day 5. Up4A at an optimal concentration of 5 μM promoted total tubule length, number of tubules, and number of junctions, all of which were inhibited by the P2Y6R antagonist MRS2578. Higher concentrations of Up4A (10 μM) had no effects on angiogenesis parameters. Up4A increased mRNA level of P2YRs (P2Y2R, P2Y4R, and P2Y6R) but not P2XR (P2X4R and P2X7R) or P1R (A2AR and A2BR), while Up4A upregulated VEGFA and ANGPT1, but not VEGFR2, ANGPT2, Tie1, and Tie2. In addition, Up4A increased VEGFA protein levels. Transcriptional upregulation of P2YRs by Up4A was inhibited by MRS2578. In conclusion, Up4A is functionally capable of promoting tubule formation in an in vitro coculture system, which is likely mediated by pyrimidine-favored P2YRs but not P2XRs or P1Rs, and involves upregulation of angiogenic factors.


2020 ◽  
Vol 6 (4) ◽  
Author(s):  
Christian Augusto Silva ◽  
Carlos J Cortés-Rodriguez ◽  
Jonas Hazur ◽  
Supachai Reakasame ◽  
Aldo R. Boccaccini

Biofabrication is a rapidly evolving field whose main goal is the manufacturing of three-dimensional (3D) cell-laden constructs that closely mimic tissues and organs. Despite recent advances on materials and techniques directed toward the achievement of this goal, several aspects such as tissue vascularization and prolonged cell functionality are limiting bench-to-bedside translation. Extrusion-based 3D bioprinting has been devised as a promising biofabrication technology to overcome these limitations, due to its versatility and wide availability. Here, we report the development of a triple-layered coaxial nozzle for use in the biomanufacturing of vascular networks and vessels. The design of the coaxial nozzle was first optimized toward guaranteeing high cell viability upon extrusion. This was done with the aid of in silico evaluations and their subsequent experimental validation by investigating the bioprinting of an alginate-based bioink. Results confirmed that the values for pressure distribution predicted by in silico experiments resulted in cell viabilities above 70% and further demonstrated the effect of layer thickness and extrusion pressure on cell viability. Our work paves the way for the rational design of multi-layered coaxial extrusion systems to be used in biofabrication approaches to replicate the very complex structures found in native organs and tissues.


iScience ◽  
2020 ◽  
Vol 23 (8) ◽  
pp. 101434
Author(s):  
Yu-Ting L. Dingle ◽  
Volha Liaudanskaya ◽  
Liam T. Finnegan ◽  
Kyler C. Berlind ◽  
Craig Mizzoni ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1404
Author(s):  
Anna Sophie Ramsauer ◽  
Garrett Louis Wachoski-Dark ◽  
Cornel Fraefel ◽  
Mathias Ackermann ◽  
Sabine Brandt ◽  
...  

There is growing evidence that equine papillomavirus type 2 (EcPV2) infection is etiologically associated with the development of genital squamous cell carcinoma (SCC) and precursor lesions in equids. However, the precise mechanisms underlying neoplastic progression remain unknown. To allow the study of EcPV2-induced carcinogenesis, we aimed to establish a primary equine cell culture model of EcPV2 infection. Three-dimensional (3D) raft cultures were generated from equine penile perilesional skin, plaques and SCCs. Using histological, molecular biological and immunohistochemical methods, rafts versus corresponding natural tissue sections were compared with regard to morphology, presence of EcPV2 DNA, presence and location of EcPV2 gene transcripts and expression of epithelial, mesenchymal and tumor/proliferation markers. Raft cultures from perilesional skin harboring only a few EcPV2-positive (EcPV2+) cells accurately recapitulated the differentiation process of normal skin, whilst rafts from EcPV2+ penile plaques were structurally organized but showed early hyperplasia. Rafts from EcPV2+ SCCs exhibited pronounced hyperplasia and marked dysplasia. Raft levels of EcPV2 oncogene transcription (E6/E7) and expression of tumor/proliferation markers p53, Ki67 and MCM7 expression positively correlated with neoplastic progression, again reflecting the natural situation. Three-dimensional raft cultures accurately reflected major features of corresponding ex vivo material, thus constituting a valuable new research model to study EcPV2-induced carcinogenesis.


Author(s):  
Martina Oriano ◽  
Laura Zorzetto ◽  
Giuseppe Guagliano ◽  
Federico Bertoglio ◽  
Sebastião van Uden ◽  
...  

2018 ◽  
Vol 5 (4) ◽  
pp. 92 ◽  
Author(s):  
Julia Marshall ◽  
Amanda Barnes ◽  
Paul Genever

Mesenchymal stem/stromal cells (MSCs) are typically characterised by their ability to differentiate into skeletal (osteogenic, chondrogenic and adipogenic) lineages. MSCs also appear to have additional non-stem cell functions in coordinating tissue morphogenesis and organising vascular networks through interactions with endothelial cells (ECs). However, suitable experimental models to examine these apparently unique MSC properties are lacking. Following previous work, we have developed our 3D in vitro co-culture models to enable us to track cellular self-organisation events in heterotypic cell spheroids combining ECs, MSCs and their differentiated progeny. In these systems, MSCs, but not related fibroblastic cell types, promote the assembly of ECs into interconnected networks through intrinsic mechanisms, dependent on the relative abundance of MSC and EC numbers. Perturbation of endogenous platelet-derived growth factor (PDGF) signalling significantly increased EC network length, width and branching. When MSCs were pre-differentiated towards an osteogenic or chondrogenic lineage and co-cultured as mixed 3D spheroids, they segregated into polarised osseous and chondral regions. In the presence of ECs, the pre-differentiated MSCs redistributed to form a central mixed cell core with an outer osseous layer. Our findings demonstrate the intrinsic self-organising properties of MSCs, which may broaden their use in regenerative medicine and advance current approaches.


2006 ◽  
Vol 290 (5) ◽  
pp. C1385-C1398 ◽  
Author(s):  
Leoni A. Kunz-Schughart ◽  
Josef A. Schroeder ◽  
Marit Wondrak ◽  
Frank van Rey ◽  
Karla Lehle ◽  
...  

The development of vessel-like structures in vitro to mimic as well as to realize the possibility of tissue-engineered small vascular networks presents a major challenge to cell biologists and biotechnologists. We aimed to establish a three-dimensional (3-D) culture system with an endothelial network that does not require artificial substrates or ECM compounds. By using human skin fibroblasts and endothelial cells (ECs) from the human umbilical vein (HUVECs) in diverse spheroid coculture strategies, we verified that fibroblast support and modulate EC migration, viability, and network formation in a 3-D tissue-like stromal environment. In mixed spheroid cultures consisting of human ECs and fibroblasts, a complex 3-D network with EC tubular structures, lumen formation, pinocytotic activity, and tight junction complexes has been identified on the basis of immunohistochemical and transmission electron microscopic imaging. Tubular networks with extensions up to 400 μm were achieved. When EC suspensions were used, EC migration and network formation were critically affected by the status of the fibroblast. However, the absence of EC migration into the center of 14-day, but not 3-day, precultured fibroblast spheroids could not be attributed to loss of F viability. In parallel, it was also confirmed that migrated ECs that entered cluster-like formations became apoptotic, whereas the majority of those forming vessel-like structures remained viable for >8 days. Our protocols allow us to study the nature of tubule formation in a manner more closely related to the in vivo situation as well as to understand the basis for the integration of capillary networks in tissue grafts and develop methods of quantifying the amount of angiogenesis in spheroids using fibroblast and other cells isolated from the same patient, along with ECs.


Sign in / Sign up

Export Citation Format

Share Document