scholarly journals The role of sheep ked (Melophagus ovinus) as potential vector of protozoa and bacterial pathogens

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Joanna Werszko ◽  
Marek Asman ◽  
Joanna Witecka ◽  
Żaneta Steiner-Bogdaszewska ◽  
Tomasz Szewczyk ◽  
...  

AbstractThe sheep ked (Melophagus ovinus) hematophagous insect may act as a potential vector of vector-borne pathogens. The aim of this study was to detect the presence of Trypanosoma spp., Bartonella spp., Anaplasma phagocytophilum and Borrelia burgdorferi sensu lato in sheep ked collected from sheep in Poland. In total, Trypanosoma spp. was detected in 58.91% of M. ovinus, whereas Bartonella spp. and B. burgdorferi s.l. were found in 86.82% and 1.55% of the studied insects, respectively. A. phagocytophilum was not detected in the studied material. In turn, co-infection by Trypanosoma spp. and Bartonella spp. was detected in 50.39%, while co-infection with Trypanosoma spp. and Bartonella spp. and B. burgdorferi s.l. was found in 1.55% of the studied insects. The conducted study showed for the first time the presence of B. burgdorferi s. l. in M. ovinus, as well as for the first time in Poland the presence of Trypanosoma spp. and Bartonella spp. The obtained results suggest that these insects may be a potential vector for these pathogens, but further-more detailed studies are required.

2020 ◽  
Author(s):  
Jörg Hirzmann ◽  
David Ebmer ◽  
Guillermo J. Sánchez Contreras ◽  
Ana Rubio-García ◽  
Gerd Magdowski ◽  
...  

Abstract Background: Belonging to the anopluran family Echinophthiriidae, Echinophthirius horridus, the seal louse, has been reported to parasitize a broad range of representatives of phocid seals. So far, only few studies focused on vector function of echinophthiriid lice and knowledge on their role in pathogen transmission is still scarce. The current study aims to investigate the possible vector role of E. horridus parasitizing seals in the Dutch Wadden Sea.Methods: More than 1200 E. horridus seal lice were collected from 54 harbour seals (Phoca vitulina) and one grey seal (Halichoerus grypus) during their rehabilitation period in the Sealcentre Pieterburen, the Netherlands. DNA was extracted from pooled seal lice of individual seals for molecular detection of the seal heartworm Acanthocheilonema spirocauda, the rickettsial intracellular bacterium Anaplasma phagocytophilum, and Mycoplasma spp. using PCR assays.Results: Seal lice from 35% of the harbour seals (19/54) and from the grey seal proved positive for A. spirocauda. The seal heartworm was molecularly characterised and phylogenetically analysed for the first time (rDNA, cox1). A nested PCR was developed for the cox1 gene to detect A. spirocauda stages in seal lice. A. phagocytophilum and a Mycoplasma species previously identified from a patient with disseminated ‘seal finger’ mycoplasmosis were detected the first time in seal lice. Conclusions: Our findings support the potential vector role of seal lice in transmission of A. spirocauda, and reveal new insights into the spectrum of pathogens occurring in seal lice. As these pathogens might have detrimental effects on the health of seal populations further epidemiological investigations on infections due to these pathogens in seals should be conducted.


2008 ◽  
Vol 74 (6) ◽  
pp. 1780-1790 ◽  
Author(s):  
N. H. Ogden ◽  
L. R. Lindsay ◽  
K. Hanincová ◽  
I. K. Barker ◽  
M. Bigras-Poulin ◽  
...  

ABSTRACT During the spring in 2005 and 2006, 39,095 northward-migrating land birds were captured at 12 bird observatories in eastern Canada to investigate the role of migratory birds in northward range expansion of Lyme borreliosis, human granulocytic anaplasmosis, and their tick vector, Ixodes scapularis. The prevalence of birds carrying I. scapularis ticks (mostly nymphs) was 0.35% (95% confidence interval [CI] = 0.30 to 0.42), but a nested study by experienced observers suggested a more realistic infestation prevalence of 2.2% (95% CI = 1.18 to 3.73). The mean infestation intensity was 1.66 per bird. Overall, 15.4% of I. scapularis nymphs (95% CI = 10.7 to 20.9) were PCR positive for Borrelia burgdorferi, but only 8% (95% CI = 3.8 to 15.1) were positive when excluding nymphs collected at Long Point, Ontario, where B. burgdorferi is endemic. A wide range of ospC and rrs-rrl intergenic spacer alleles of B. burgdorferi were identified in infected ticks, including those associated with disseminated Lyme disease and alleles that are rare in the northeastern United States. Overall, 0.4% (95% CI = 0.03 to 0.41) of I. scapularis nymphs were PCR positive for Anaplasma phagocytophilum. We estimate that migratory birds disperse 50 million to 175 million I. scapularis ticks across Canada each spring, implicating migratory birds as possibly significant in I. scapularis range expansion in Canada. However, infrequent larvae and the low infection prevalence in ticks carried by the birds raise questions as to how B. burgdorferi and A. phagocytophilum become endemic in any tick populations established by bird-transported ticks.


2011 ◽  
Vol 59 (2) ◽  
pp. 215-223 ◽  
Author(s):  
Anna Rymaszewska ◽  
Małgorzata Adamska

Ticks of the genusIxodesare vectors for many pathogens, includingBorrelia burgdorferisensu lato,Anaplasma phagocytophilumandRickettsiaspp., and may also serve as vectors forBartonellaspp. However, the role of ticks inBartonellatransmission requires additional studies. The aim of this study was to investigate whether coinfection with two or more vector-borne pathogens can occur in the following three groups of dogs: I — dogs with suspected borreliosis (N = 92), II — dogs considered healthy (N = 100), and III — dogs with diagnosed babesiosis (N = 50). Polymerase chain reactions were performed to detect DNA ofAnaplasma phagocytophilum, Rickettsiaspp. andBartonellaspp. in the blood of dogs. In dogs of Group I, the DNA of bothA. phagocytophilumandBartonellasp. was detected (14% and 1%, respectively). In eight dogs, coinfection was indicated:A. phagocytophilumorBartonellasp. withB. burgdorferis.l. (the presence of antibodies against and/or DNAB. burgdorferis.l.). In the case of five dogs positive forA. phagocytophilumDNA, no coinfection withB. burgdorferis.l. was shown. In Group II, the DNA ofA. phagocytophilumwas detected in four dogs. In Group III, no pathogenic agents possibly transmitted by ticks were confirmed. No DNA ofR. helveticawas detected in any of the groups studied.


2019 ◽  
Author(s):  
Grégoire Perez ◽  
Suzanne Bastian ◽  
Amélie Chastagner ◽  
Albert Agoulon ◽  
Yann Rantier ◽  
...  

AbstractContextBy modifying ecosystems, land cover changes influence the emergence, the spread and the incidence of vector-borne diseases.ObjectiveThis study aimed at identifying associations between landscape structure and the prevalence of two tick-borne infectious agents, Anaplasma phagocytophilum and Borrelia burgdorferi s.l., in small mammal communities.MethodsSmall mammals were sampled in 24 sites along a gradient of woodland fragmentation and hedgerow network density, and screened for infectious agents with real-time PCR techniques. For each site, structural variables (composition and configuration) of the surrounding landscape at various scales (0-500 m) and variables of wooded habitats connectivity based on graph theory and least cost path distances for the two dominant species, bank voles (Myodes glareolus) and wood mice (Apodemus sylvaticus), were computed.ResultsThe A. phagocytophilum prevalence increased with wooded habitats cover (0-500 m), likely through host population size, and increased slightly with bank vole abundance, which has a higher reservoir competence than wood mouse. The B. burgdorferi s.l. prevalence increased with wooded ecotones only at local scales (50-100 m). Wooded habitats connectivity measures did not improve models built with simple land cover variables. A more marked spatial pattern was observed for the prevalence of A. phagocytophilum than B. burgdorferi s.l..ConclusionsThis study highlights the interest of considering together the ecology of infectious agents (e.g. host specificity) and the host species community ecology to better understand the influence of the landscape structure on the spatial distribution of vector-borne infectious agents.


Pathogens ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1265
Author(s):  
John D. Scott ◽  
Risa R. Pesapane

Tick-borne pathogens cause infectious diseases that inflict much societal and financial hardship worldwide. Blacklegged ticks, Ixodes scapularis, are primary vectors of several epizootic and zoonotic pathogens. The aim sets forth the pathogens and their prevalence. In Ontario and Quebec, 113 I. scapularis ticks were collected from songbirds, mammals, including humans, and by flagging. PCR and DNA sequencing detected five different microorganisms: Anaplasma phagocytophilum, 1 (0.9%); Babesia odocoilei, 17 (15.3%); Babesia microti-like sp., 1 (0.9%); Borrelia burgdorferi sensu lato (Bbsl), 29 (26.1%); and Hepatozoon canis, 1 (0.9%). Five coinfections of Bbsl and Babesia odocoilei occurred. Notably, H. canis was documented for the first time in Canada and, at the same time, demonstrates the first transstadial passage of H. canis in I. scapularis. Transstadial passage of Bbsl and B. odocoilei was also witnessed. A novel undescribed piroplasm (Babesia microti-like) was detected. An established population of I. scapularis ticks was detected at Ste-Anne-de-Bellevue, Quebec. Because songbirds widely disperse I. scapularis larvae and nymphs, exposure in an endemic area is not required to contract tick-borne zoonoses. Based on the diversity of zoonotic pathogens in I. scapularis ticks, clinicians need to be aware that people who are bitten by I. scapularis ticks may require select antimicrobial regimens.


2021 ◽  
Vol 95 ◽  
Author(s):  
P.V. Alves ◽  
S.C. Gomides ◽  
F.B. Pereira

Abstract While much attention has been paid to vector-borne filariasis, diseases that threaten millions of people in tropical and subtropical countries, the literature on host–parasite associations and transmission strategies of filarial nematodes in wildlife is scarce. Here, we report the co-occurrence of chigger mites (Eutrombicula alfreddugesi) and onchocercid nematodes (Oswaldofilaria chabaudi) parasitizing the lizard Tropidurus torquatus in the State of Minas Gerais, Brazil. Examination of chiggers established, for the first time, the occurrence of microfilariae in trombiculid mites (Trombiculidae). These larvae were morphologically similar to those recovered from adult females of O. chabaudi. The current evidence suggests that chiggers do not play a role in the transmission of filarioid nematodes, but rather act as accidental or dead-end hosts. Nevertheless, considering the polyphagous nature of trombiculid mites, similar to blood-sucking insects involved in the transmission of several infectious diseases, further studies may shed light on the potential role of chiggers as vectors of filarioids.


2020 ◽  
Author(s):  
Jörg Hirzmann ◽  
David Ebmer ◽  
Guillermo J. Sánchez Contreras ◽  
Ana Rubio-García ◽  
Gerd Magdowski ◽  
...  

Abstract Background: Belonging to the anopluran family Echinophthiriidae, Echinophthirius horridus, the seal louse, has been reported to parasitize a broad range of representatives of phocid seals. So far, only few studies focused on vector function of echinophthiriid lice and knowledge on their role in pathogen transmission is still scarce. The current study aims to investigate the role of E. horridus in vector-borne diseases of seals in the Dutch Wadden Sea and to attribute to its morphological features of environmental adaptation.Methods: More than 1200 E. horridus seal lice were collected from 54 harbour seals (Phoca vitulina) and one grey seal (Halichoerus grypus) during their rehabilitation period in the Sealcentre Pieterburen, the Netherlands. DNA was extracted from pooled seal lice of individual seals for molecular detection of the seal heartworm Acanthocheilonema spirocauda, the rickettsial intracellular bacterium Anaplasma phagocytophilum, and Mycoplasma spp. using PCR assays. In addition E. horridus-adult and -eggs were analysed by scanning electron microscopy (SEM).Results: Seal lice from 35% of the harbour seals (19/54) and from the grey seal proved positive for A. spirocauda. The seal heartworm was molecularly characterised and phylogenetically analysed for the first time (rDNA, cox1). A nested PCR was developed for the cox1 gene to detect A. spirocauda stages in seal lice. A. phagocytophilum and a Mycoplasma species previously identified from a patient with disseminated ‘seal finger’ mycoplasmosis were detected the first time in seal lice. SEM analyses of E. horridus-adults and -eggs brought out more clearly unique morphological features, such as ‘lock-like’ claws, setae-covered cuticle as well as vaulted nit lids carrying micropyles for respiration, which all demonstrate the adaption of this ectoparasite to its semiaquatic host and the marine environment.Conclusions: Our findings support the vector role of seal lice in transmission of A. spirocauda, Mycoplasma spp. and A. phagocytophilum and presented more detailed images of their morphological adaptations to the semiaquatic lifestyle of their hosts. As the vector-borne pathogens might have detrimental effects on the health of seal populations further epidemiological investigations on infections due to these pathogens in seals should be conducted.


2021 ◽  
Vol 8 ◽  
Author(s):  
Sarah El Hamiani Khatat ◽  
Sylvie Daminet ◽  
Luc Duchateau ◽  
Latifa Elhachimi ◽  
Malika Kachani ◽  
...  

Anaplasma phagocytophilum is a worldwide emerging zoonotic tick-borne pathogen transmitted by Ixodid ticks and naturally maintained in complex and incompletely assessed enzootic cycles. Several studies have demonstrated an extensive genetic variability with variable host tropisms and pathogenicity. However, the relationship between genetic diversity and modified pathogenicity is not yet understood. Because of their proximity to humans, dogs are potential sentinels for the transmission of vector-borne pathogens. Furthermore, the strong molecular similarity between human and canine isolates of A. phagocytophilum in Europe and the USA and the positive association in the distribution of human and canine cases in the USA emphasizes the epidemiological role of dogs. Anaplasma phagocytophilum infects and survives within neutrophils by disregulating neutrophil functions and evading specific immune responses. Moreover, the complex interaction between the bacterium and the infected host immune system contribute to induce inflammatory injuries. Canine granulocytic anaplasmosis is an acute febrile illness characterized by lethargy, inappetence, weight loss and musculoskeletal pain. Hematological and biochemistry profile modifications associated with this disease are unspecific and include thrombocytopenia, anemia, morulae within neutrophils and increased liver enzymes activity. Coinfections with other tick-borne pathogens (TBPs) may occur, especially with Borrelia burgdorferi, complicating the clinical presentation, diagnosis and response to treatment. Although clinical studies have been published in dogs, it remains unclear if several clinical signs and clinicopathological abnormalities can be related to this infection.


Pathogens ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1190
Author(s):  
Anna W. Myczka ◽  
Żaneta Steiner-Bogdaszewska ◽  
Katarzyna Filip-Hutsch ◽  
Grzegorz Oloś ◽  
Michał Czopowicz ◽  
...  

Background: The role of cervids in the circulation of A. phagocytophilum has not yet been clearly determined; however, several species of wild and farm cervids may be a natural reservoir of this bacteria. Methods: Spleen and liver tissue samples were taken from 207 wild (red deer, roe deer, fallow deer and moose) and farmed cervids (red deer and fallow deer) from five geographical areas. These were tested for the A. phagocytophilum16S rDNA partial gene by nested PCR. Results: Anaplasma spp. were detected in 91 of 207 examined cervids (prevalence 43.9%). Three different variants of 16S rDNA partial gene were reported, one for the first time. Anaplasma phagocytophilum was more often detected in young specimens than in adults and more often in the spleen than in the liver. Conclusions: Cervids from the four sites across Poland were found to be major natural reservoirs of various strains of A. phagocytophilum. This is the first study to use spleen and liver as biological material to detect A. phagocytophilum in moose in Poland.


Sign in / Sign up

Export Citation Format

Share Document