scholarly journals Characterization of Mariner transposons in seven species of Rhus gall aphids

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aftab Ahmad ◽  
Gabriel Luz Wallau ◽  
Zhumei Ren

AbstractTransposable elements (TEs), also known as jumping genes, are widely spread in the genomes of insects and play a considerable role in genomic evolution. Mariner/DD34D family belongs to class II transposable elements which is widely spread in the genomes of insects and have considerable role in genomic evolution. Mariner like elements (MLEs) were searched in the genomes of seven species of Rhus gall aphids belonging to six genera. In total, 121 MLEs were detected in the genomes of the seven investigated species of Rhus gall aphids, which showed a wide distribution in both close and distant related species. The sequences of MLEs ranged from 1 to 1.4 kb in length and the structural analysis of the MLEs showed that only five copies were potentially active with intact open reading frame (ORF) and terminal inverted repeats (TIRs). Phylogenetic analysis showed that all the 121 MLE sequences belonged to four subfamilies, i.e., Mauritiana, Drosophila, Vertumana and Irritans, among which Drosophila and Vertumana subfamilies were reported in aphids for the first time. Our present report revealed the diversity and distribution of MLEs in Rhus gall aphid genomes and expanded our understandings on the characterization of transposable elements in aphid genomes, which might be useful as genetic markers and tools and would play an important role in genomic evolution and adaptation of aphids.

2021 ◽  
Author(s):  
Aftab Ahmad ◽  
Gabriel Luz Wallau ◽  
Zhumei Ren

Abstract Background: Transposable elements (TEs), also known as jumping genes, are widely spread in the genomes of insects and play a considerable role in genomic evolution. Mariner family belongs to class II transposable elements, were searched in the genomes of seven species of Rhus gall aphids belonging to six genera. Mariner-like elements were characterized for the first time in Rhus gall aphids and classified in to respective subfamilies.Results: In total, one hundred twenty-one MLEs were detected in the genomes of the seven investigated species of Rhus gall aphids, which showed a wide distribution of MLEs in both close and distant related species. The sequences of MLEs ranged from 1kb to 1.4kb in length and the structural analysis of the MLEs showed that only five copies were potentially active with intact open reading frame (ORF) while the remaining were classified as inactive MLEs according to absence of single intact ORF or terminal inverted repeats (TIRs). Based on the MLEs in Rhus gall aphids as well as the well characterized MLEs in other organisms from GenBank, the phylogenetic analysis showed that all the one hundred twenty-one MLE sequences belonged to four subfamilies, i.e., thirty from Maurutiana subfamily, twenty-six from Drosophila subfamily, thirty-three from Vertumana subfamily and thirty-two from Irritans subfamily, among which Drosophila and Vertumana subfamilies were reported in aphids for the first time. Moreover, the phylogenetic relationship suggested possible horizontal transfer events of MLEs between aphids and other insects.Conclusion: Our present report revealed the diversity and distribution of MLEs in Rhus gall aphid genomes sequenced by shotgun genome skimming method. This study further expanded our understandings on the characterization of transposable elements in aphid genomes, which might be useful as genetic markers and tools and would play an important role in genomic evolution and adaptation of aphids.


2004 ◽  
Vol 380 (3) ◽  
pp. 749-756 ◽  
Author(s):  
Yong-Xin SUN ◽  
Kazuhito TSUBOI ◽  
Yasuo OKAMOTO ◽  
Takeharu TONAI ◽  
Makoto MURAKAMI ◽  
...  

Anandamide (an endocannabinoid) and other bioactive long-chain NAEs (N-acylethanolamines) are formed by direct release from N-acyl-PE (N-acyl-phosphatidylethanolamine) by a PLD (phospholipase D). However, the possible presence of a two-step pathway from N-acyl-PE has also been suggested previously, which comprises (1) the hydrolysis of N-acyl-PE to N-acyl-lysoPE by PLA1/PLA2 enzyme(s) and (2) the release of NAEs from N-acyllysoPE by lysoPLD (lysophospholipase D) enzyme(s). In the present study we report for the first time the characterization of enzymes responsible for this pathway. The PLA1/PLA2 activity for N-palmitoyl-PE was found in various rat tissues, with the highest activity in the stomach. This stomach enzyme was identified as group IB sPLA2 (secretory PLA2), and its product was determined as N-acyl-1-acyl-lysoPE. Recombinant group IB, IIA and V of sPLA2s were also active with N-palmitoyl-PE, whereas group X sPLA2 and cytosolic PLA2α were inactive. In addition, we found wide distribution of lysoPLD activity generating N-palmitoylethanolamine from N-palmitoyl-lysoPE in rat tissues, with higher activities in the brain and testis. Based on several lines of enzymological evidence, the lysoPLD enzyme could be distinct from the known N-acyl-PE-hydrolysing PLD. sPLA2-IB dose dependently enhanced the production of N-palmitoylethanolamine from N-palmitoyl-PE in the brain homogenate showing the lysoPLD activity. N-Arachidonoyl-PE and N-arachidonoyl-lysoPE as anandamide precursors were also good substrates of sPLA2-IB and the lysoPLD respectively. These results suggest that the sequential actions of PLA2 and lysoPLD may constitute another biosynthetic pathway for NAEs, including anandamide.


1998 ◽  
Vol 42 (10) ◽  
pp. 2759-2761 ◽  
Author(s):  
Eric Rudant ◽  
Patrice Courvalin ◽  
Thierry Lambert

ABSTRACT Insertion sequence IS18 was detected by analysis of the spontaneous aminoglycoside resistant mutant Acinetobactersp. 13 strain BM2716-1. Insertion of the element upstream from the silent acetyltransferase gene aac(6′)-Ij created a hybrid promoter that putatively accounts for the expression of the aminoglycoside resistance gene. The 1,074-bp IS18 element contained partially matched (20 out of 26 bases) terminal inverted repeats, one of which overlapped the 3′ end of a 935-bp open reading frame potentially encoding a protein related to the transposases of the IS30 family. IS18 was found in 6 out of 29 strains of Acinetobacter sp. 13 but not in 10 strains each of A. baumannii and A. haemolyticus.


2002 ◽  
Vol 68 (5) ◽  
pp. 2307-2315 ◽  
Author(s):  
Masahiro Sota ◽  
Masahiro Endo ◽  
Keiji Nitta ◽  
Haruhiko Kawasaki ◽  
Masataka Tsuda

ABSTRACT The two haloacetate dehalogenase genes, dehH1 and dehH2, on the 65-kb plasmid pUO1 from Delftia acidovorans strain B were found to be located on transposable elements. The dehH2 gene was carried on an 8.9-kb class I composite transposon (TnHad1) that was flanked by two directly repeated copies of IS1071, IS1071L and IS1071R. The dehH1 gene was also flanked by IS1071L and a truncated version of IS1071 (IS1071N). TnHad1, dehH1, and IS1071N were located on a 15.6-kb class II transposon (TnHad2) whose terminal inverted repeats and res site showed high homology with those of the Tn21-related transposons. TnHad2 was defective in transposition because of its lacking the transposase and resolvase genes. TnHad2 could transpose when the Tn21-encoded transposase and resolvase were supplied in trans. These results demonstrated that Tn Had2 is a defective Tn21-related transposon carrying another class I catabolic transposon.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Pragya Tiwari ◽  
Rajender Singh Sangwan ◽  
Asha ◽  
B. N. Mishra ◽  
Farzana Sabir ◽  
...  

Gymnema sylvestreR.Br., a pharmacologically important herb vernacularly called Gur-Mar (sugar eliminator), is widely known for its antidiabetic action. This property of the herb has been attributed to the presence of bioactive triterpene glycosides. Although some information regarding pharmacology and phytochemical profiles of the plant are available, no attempts have been made so far to decipher the biosynthetic pathway and key enzymes involved in biosynthesis of steryl glucosides. The present report deals with the identification and catalytic characterization of a glucosyltransferase, catalyzing biosynthesis of steryl glycosides. The full length cDNA (2572 bp) contained an open reading frame of 2106 nucleotides that encoded a 701 amino acid protein, falling into GT-B subfamily of glycosyltransferases. The GsSGT was expressed inEscherichia coliand biochemical characterization of the recombinant enzyme suggested its key role in the biosynthesis of steryl glucosides with catalytic preference for C-3 hydroxyl group of sterols. To our knowledge, this pertains to be the first report on cloning and biochemical characterization of a sterol metabolism gene fromG. sylvestreR.Br. catalyzing glucosylation of a variety of sterols of biological origin from diverse organisms such as bacteria, fungi, and plants.


2017 ◽  
Vol 69 (2) ◽  
pp. 353-360 ◽  
Author(s):  
Salma Djebbi ◽  
Amara Ben ◽  
Hanem Makni ◽  
Mohamed Makni ◽  
Maha Mezghani-Khemakhem

Mariner-like elements (MLEs) are Class-II transposons that are widely present in diverse organisms and encode a D,D34D transposase motif. MLE sequences from two coleopteran species, Bruchuspisorum and B. rufimanus were obtained using the terminal-inverted repeats (TIRs) of mariner elements belonging to the mauritiana subfamily as primer. The characterized elements were between 1073 and 1302 bp in length and are likely to be inactive, based on the presence of multiple stop codons and/or frameshifts. A single consensus of MLE was detected in B. pisorum and was named Bpmar1. This element exhibited several conserved amino acid blocks as well as the specific D,D(34)D signature. As for B. rufimanus, two MLE consensuses, designated Brmar1 and Brmar2, were isolated, both containing deletions overlapping the internal region of the transposase. Structural and phylogenetic analysis of these sequences suggested a relatively recent origin of Bpmar1 versus a more ancient invasion of Brmar1 and Brmar2 in their respective host genomes. Given that MLEs are potential mediators of insect resistance and have been used as vectors to transfer genes into host genomes, the MLEs characterized in this study will have valuable implications for selecting appropriate transposable elements in transgenesis.


Genetics ◽  
1991 ◽  
Vol 129 (3) ◽  
pp. 845-854 ◽  
Author(s):  
M M Qin ◽  
D S Robertson ◽  
A H Ellingboe

Abstract The identification of the autonomous or transposase-encoding element of the Mutator (Mu) transposable element system of maize is necessary to the characterization of the system. We reported previously that a transcript homologous to the internal region of the MuA element is associated with activity of the Mutator system. We describe here the cloning of another Mu element, designated MuA2, that cosegregates with Mutator activity as assayed by somatic instability of the a1-Mum2 allele. The MuA2 element has features typical of the transposable elements of the Mutator family, including the 210-bp terminal inverted repeats. Several lines of evidence suggest that MuA2 is an autonomous or transposase-encoding element of the Mu family: (1) MuA2 cosegregates with a genetically defined element that regulates somatic mutability of the a1-Mum2 allele; (2) MuA2 is hypomethylated while most other MuA2-hybridizing sequences in the genome are extensively methylated; (3) the increase of the copy number of MuA2 is concomitant with the increase of regulator elements; (4) MuA2-like elements are found in Mutator lines but not in non-Mutator inbreds. We propose that autonomous or transposase-encoding elements of the Mu family may be structurally conserved and MuA2-like.


Author(s):  
Marwa Zidi ◽  
Françoise Denis ◽  
Khouloud Klai ◽  
Benoît Chénais ◽  
Aurore Caruso ◽  
...  

Abstract The whitefly, Bemisia tabaci is a hemipteran pest of vegetable crops vectoring a broad category of viruses. Currently, this insect pest showed a high adaptability and resistance to almost all the chemical compounds commonly used for its control. In many cases, Transposable Elements (TEs) contributed to the evolution of host genomic plasticity. This study focuses on the annotation of Mariner Like Elements (MLEs) and their derived Miniature Inverted repeat Transposable Elements (MITEs) in the genome of B. tabaci. Two full-length MLEs belonging to mauritiana and irritans subfamilies were detected and named Btmar1.1 and Btmar2.1, respectively. Additionally, 548 defective MLE sequences clustering mainly into 19 different Mariner lineages of mauritiana and irritans subfamilies were identified. Each subfamily showed a significant variation in MLE copy number and size. Furthermore, 71 MITEs were identified as MLEs derivatives that could be mobilized via the potentially active transposases encoded by Btmar 1.1 and Btmar2.1. The vast majority of sequences detected in the whitefly genome present unusual Terminal Inverted Repeats (TIRs) of up to 400 bp in length. However, some exceptions are sequences without TIRs. This feature of the MLEs and their derived MITEs in B. tabaci genome that distinguishes them from all the other MLEs so far described in insects, which have TIRs size ranging from 20 to 40 bp. Overall, our study provides an overview of MLEs, especially those with large TIRs, and their related MITEs, as well as diversity of their families, which will provide a better understanding of the evolution and adaptation of the whitefly genome.


2003 ◽  
Vol 185 (13) ◽  
pp. 3753-3763 ◽  
Author(s):  
Dariusz Bartosik ◽  
Marta Sochacka ◽  
Jadwiga Baj

ABSTRACT We studied diversity and distribution of transposable elements residing in different strains (DSM 11072, DSM 11073, DSM 65, and LMD 82.5) of a soil bacterium Paracoccus pantotrophus (α-Proteobacteria). With application of a shuttle entrapment vector pMEC1, several novel insertion sequences (ISs) and transposons (Tns) have been identified. They were sequenced and subjected to detailed comparative analysis, which allowed their characterization (i.e., identification of transposase genes, terminal inverted repeats, as well as target sequences) and classification into the appropriate IS or Tn families. The frequency of transposition of these elements varied and ranged from 10−6 to 10−3 depending on the strain. The copy number, localization (plasmid or chromosome), and distribution of these elements in the Paracoccus species P. pantotrophus, P. denitrificans, P. methylutens, P. solventivorans, and P. versutus were analyzed. This allowed us to distinguish elements that are common in paracocci (ISPpa2, ISPpa3—both of the IS5 family—and ISPpa5 of IS66 family) as well as strain-specific ones (ISPpa1 of the IS256 family, ISPpa4 of the IS5 family, and Tn3434 and Tn5393 of the Tn3 family), acquired by lateral transfer events. These elements will be of a great value in the design of new genetic tools for paracocci, since only one element (IS1248 of P. denitrificans) has been described so far in this genus.


Sign in / Sign up

Export Citation Format

Share Document