scholarly journals Simulation and estimation of future ecological risk on the Qinghai-Tibet Plateau

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shengzhen Wang ◽  
Fenggui Liu ◽  
Qiang Zhou ◽  
Qiong Chen ◽  
Fei Liu

AbstractOver the past 50 years, temperatures on the Qinghai-Tibet Plateau (QTP) have risen roughly twice as fast as the global average, making it the most unpredictable region of environmental change due to global warming. In this paper, an Environmental Area Index model was developed using data from the Coupled Model Intercomparison Project to assess the ecological risk faced by QTP ecosystems under the influence of climate factors. The results show that ecological risk gradually decreases from northwest to the southeast, and there are different trends in ecological risk for each class in areas with different elevation gradients. As elevation increased, the proportion of potential risk areas gradually decreased, and the proportion of high- and higher-risk areas gradually increased. We predict that in the period 2021–2100, the overall ecological risk change trend on the QTP will not be obvious, but there will be a more obvious change on the vertical gradient. In general, under the existing global climate change scenario, the ecological risk faced by the QTP show a decreasing trend under the influence of climate factors, and the decrease in ecological risks is much higher at higher elevations than at lower elevations.

2021 ◽  
Vol 13 (10) ◽  
pp. 5366
Author(s):  
Wei Shi ◽  
Fuwei Qiao ◽  
Liang Zhou

With the interaction of global change and human activities, the contradistinction between supply and demand of ecosystem services in the Qinghai-Tibet Plateau is becoming increasingly tense, which will have a profound impact on the ecological security of China and even Asia. Based on land cover data on the Qinghai-Tibet Plateau in 1990, 2005, and 2015, this paper estimated the supply capacity of ecosystem services using the value equivalent method, calculated the demand for ecosystem services using population density and economic density, established an ecosystem risk index based on the idea of an ecosystem service matrix to reveal the spatio-temporal pattern of the supply and demand of ecosystem services in the Qinghai-Tibet Plateau, and identified the potential ecological risk areas arising from the imbalance between supply and demand. The results showed that: (1) In terms of the spatio-temporal pattern of land use change, the desert area of the Qinghai-Tibet Plateau decreased the most with 26,238.9 km2, and other types of land use increased, of which construction land increased by 131.7%; (2) In terms of the supply and demand of ecosystem services, the Qinghai-Tibet Plateau was mainly dominated by low-level surplus areas, accounting for 64.0%, and the deficit in some areas has worsened significantly; and (3) In terms of division pattern of ecological risk areas, the Qinghai-Tibet Plateau presented characteristics of high risk in the east and low risk in the west. The high-risk area accounted for 1.1%, mainly distributed in the Huangshui Valley and the “One River and Two Tributaries” (Yarlung Zangbo River, Lhasa River, Nianchu River). The research results can provide reference for ecosystem management and policy formulation of the Qinghai-Tibet Plateau and have important significance for realizing the coupling and coordinated development of human–land relationship in Qinghai-Tibet Plateau.


2021 ◽  
Vol 13 (4) ◽  
pp. 669
Author(s):  
Hanchen Duan ◽  
Xian Xue ◽  
Tao Wang ◽  
Wenping Kang ◽  
Jie Liao ◽  
...  

Alpine meadow and alpine steppe are the two most widely distributed nonzonal vegetation types in the Qinghai-Tibet Plateau. In the context of global climate change, the differences in spatial-temporal variation trends and their responses to climate change are discussed. It is of great significance to reveal the response of the Qinghai-Tibet Plateau to global climate change and the construction of ecological security barriers. This study takes alpine meadow, alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau as the research objects. The normalized difference vegetation index (NDVI) data and meteorological data were used as the data sources between 2000 and 2018. By using the mean value method, threshold method, trend analysis method and correlation analysis method, the spatial and temporal variation trends in the alpine meadow, alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau were compared and analyzed, and their differences in the responses to climate change were discussed. The results showed the following: (1) The growing season length of alpine meadow was 145~289 d, while that of alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau was 161~273 d, and their growing season lengths were significantly shorter than that of alpine meadow. (2) The annual variation trends of the growing season NDVI for the alpine meadow, alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau increased obviously, but their fluctuation range and change rate were significantly different. (3) The overall vegetation improvement in the Qinghai-Tibet Plateau was primarily dominated by alpine steppe and alpine meadow, while the degradation was primarily dominated by alpine meadow. (4) The responses between the growing season NDVI and climatic factors in the alpine meadow, alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau had great spatial heterogeneity in the Qinghai-Tibet Plateau. These findings provide evidence towards understanding the characteristics of the different vegetation types in the Qinghai-Tibet Plateau and their spatial differences in response to climate change.


2019 ◽  
Vol 11 (20) ◽  
pp. 2435 ◽  
Author(s):  
Chao Wang ◽  
Qiong Gao ◽  
Mei Yu

The Qinghai-Tibet Plateau (QTP) is among the most sensitive ecosystems to changes in global climate and human activities, and quantifying its consequent change in land-cover land-use (LCLU) is vital for assessing the responses and feedbacks of alpine ecosystems to global climate changes. In this study, we first classified annual LCLU maps from 2001–2015 in QTP from MODIS satellite images, then analyzed the patterns of regional hotspots with significant land changes across QTP, and finally, associated these trends in land change with climate forcing and human activities. The pattern of land changes suggested that forests and closed shrublands experienced substantial expansions in the southeastern mountainous region during 2001–2015 with the expansion of massive meadow loss. Agricultural land abandonment and the conversion by conservation policies existed in QTP, and the newly-reclaimed agricultural land partially offset the loss with the resulting net change of −5.1%. Although the urban area only expanded 586 km2, mainly at the expense of agricultural land, its rate of change was the largest (41.2%). Surface water exhibited a large expansion of 5866 km2 (10.2%) in the endorheic basins, while mountain glaciers retreated 8894 km2 (−3.4%) mainly in the southern and southeastern QTP. Warming and the implementation of conservation policies might promote the shrub encroachment into grasslands and forest recovery in the southeastern plateau. While increased precipitation might contribute to the expansion of surface water in the endorheic basins, warming melts the glaciers in the south and southeast and complicates the hydrological service in the region. The substantial changes in land-cover reveal the high sensitivity of QTP to changes in climate and human activities. Rational policies for conservation might mitigate the adverse impacts to maintain essential services provided by the important alpine ecosystems.


2021 ◽  
Vol 36 (12) ◽  
pp. 3232
Author(s):  
Fei LIU ◽  
Feng-gui LIU ◽  
Qiang ZHOU ◽  
Qiong CHEN ◽  
Sheng-zhen WANG ◽  
...  

Author(s):  
Huicong Jia ◽  
Fang Chen ◽  
Donghua Pan

As a “starting zone” and “amplifier” of global climate change, the Qinghai–Tibet Plateau is very responsive to climate change. The global temperature rise has led directly to an acceleration of glacial melting in the plateau and various glacier avalanche disasters have frequently occurred. The landslide caused by glacier avalanches will damage the surrounding environment, causing secondary disasters and a disaster chain effect. Take the disaster chain of the Yarlung Zangbo River at Milin County in Tibet on 17 and 29 October 2018 as an example; a formation mechanical model was proposed. The evolution mechanism for the chain of events is as follows: glacial melt → loose moraine deposit → migration along the steep erosion groove resulting in glacier clastic deposition then debris flow → formation of the dam plug to block the river → the dammed lake. This sequence of events is of great significance for understanding the developmental trends for future avalanches, landslides, and river blocking dam disasters, and for disaster prevention planning and mitigation in the Qinghai–Tibet Plateau.


2015 ◽  
Vol 12 (1) ◽  
pp. 481-513 ◽  
Author(s):  
S. Ding ◽  
Y. Xu ◽  
Y. Wang ◽  
Y. He ◽  
J. Hou ◽  
...  

Abstract. The methylation index of branched tetraethers (MBT) and cyclization ratio of branched tetraethers (CBT) based on the distribution of bacteria-derived branched glycerol dialkyl glycerol tetraethers (bGDGTs) are useful proxies for the reconstruction of continental paleotemperature and soil pH. Several calibrations of the MBT-CBT index have been proposed based on global and regional soils and lake sediments. However, little is known about the distribution and applicability of GDGTs proxies in the Qinghai–Tibet Plateau (QTP), a critical region of the global climate system. Here, we investigated 33 surface soils covering a large area of the QTP. Redundancy analysis showed that soil pH was the most important factor affecting GDGT distributions, followed by mean annual precipitation (MAP) and mean annual air temperature (MAT). The branched-isoprenoid tetraether (BIT) index, an indicator for estimation of soil organic matter in aquatic environments, varied from 0.48 to 1 and negatively correlated with soil pH (r2 = 0.38), suggesting that the BIT index should be used with caution in the QTP. A transfer function of the CBT index-soil pH was established to estimate paleo-soil pH in the QTP: pH = 8.33–1.43 × CBT (r2 = 0.80, RMSE = 0.27 pH unit). The local calibration of MBT-CBT index presented a weak, still significant correlation with MAT (r2 = 0.36) mainly owing to the additional influence of MAP (r2 = 0.50). Combining our data with previously reported GDGTs for Chinese soils resulted in a new calibration of MBT/CBT-MAT: MAT = 2.68+26.14 × MBT–3.37 × CBT (r2 = 0.73; RMSE = 4.2 °C, n = 164). The correlation coefficient and residual error of this new transfer function is comparable with global calibrations, suggesting that MBT-CBT paleotemperature proxy is still valid in the QTP.


2019 ◽  
Vol 7 (12) ◽  
pp. 611
Author(s):  
Huan Li ◽  
Yijie Wang ◽  
Qiaoling Yu ◽  
Tianshu Feng ◽  
Rui Zhou ◽  
...  

Human skin microbiota plays a crucial role in the defense against pathogens, and is associated with various skin diseases. High elevation is positively correlated with various extreme environmental conditions (i.e., high ultraviolet radiation), which may exert selection pressure on skin microbiota, and therefore influence human health. Most studies regarding skin microbial communities have focused on low-elevation hosts. Few studies have explored skin microbiota in high-elevation humans. Here, we investigated the diversity, function, assembly, and co-occurrence patterns of skin microbiotas from 35 health human subjects across three body sites (forehead, opisthenar, and palm) and seven elevation gradients from 501 to 3431 m. Alpha diversity values (i.e., Shannon diversity and observed operational taxonomic units (OTUs)) decreased with increasing elevation regardless of the body site, while beta diversity (Jaccard and Bray–Curtis dissimilarities) showed an increasing trend with elevation. Elevation is a significant factor that influences human skin microbiota, even after controlling host-related factors. Skin microbiotas at high elevation with more than 3000 m on the Qinghai–Tibet Plateau, had a significant structural or functional separation from those at low elevation with less than 3000 m. Notably, the clustering coefficient, average degree, and network density were all lower at high-elevation than those at low-elevation, suggesting that high-elevation skin networks were more fragile and less connected. Phylogenetic analysis showed that human skin microbiotas are mainly dominated by stochastic processes (58.4%–74.6%), but skin microbiotas at high-elevation harbor a greater portion of deterministic processes than those at low-elevation, indicating that high-elevation may be conducive to the promotion of deterministic processes. Our results reveal that the filtering and selection of the changeable high-elevation environment on the Qinghai–Tibet Plateau may lead to less stable skin microbial community structures.


2020 ◽  
Author(s):  
Lin Zhao ◽  
Guojie Hu ◽  
Defu Zou ◽  
Ren Li ◽  
Yu Sheng ◽  
...  

<p>Due to the climate warming, permafrost on the Qinghai-Tibet Plateau (QTP) was degradating in the past decades. Since its impacts on East Asian monsoon, and even on the global climate system, it is fundamental to reveal permafrost status, changes and its physical processes. Based on previous research results and new observation data, this paper reviews the characteristics of the status of permafrost on the QTP, including the active layer thickness (ALT), the spatial distribution of permafrost, permafrost temperature and thickness, as well as the ground ice and soil carbon storage in permafrost region.</p><p>The results showed that the permafrost and seasonally frozen ground area (excluding glaciers and lakes) is 1.06 million square kilometters and 1.45 million square kilometters on the QTP. The permafrost thickness varies greatly among topography, with the maximum value in mountainous areas, which could be deeper than 200 m, while the minimum value in the flat areas and mountain valleys, which could be less than 60 m. The mean value of active layer thickness is about 2.3 m. Soil temperature at 0~10 cm, 10~40 cm, 40~100 cm, 100~200 cm increased at a rate of 0.439, 0.449, 0.396, and 0.259°C/10a, respectively, from 1980 to 2015. The increasing rate of the soil temperature at the bottom of active layer was 0.486 oC/10a from 2004 to 2018.</p><p>The volume of ground ice contained in permafrost on QTP is estimated up to 1.27×10<sup>4</sup> km<sup>3</sup> (liquid water equivalent). The soil organic carbon staored in the upper 2 m of soils within the permafrost region is about 17 Pg. Most of the research results showed that the permafrost ecosystem is still a carbon sink at the present, but it might be shifted to a carbon source due to the loss of soil organic carbon along with permafrost degradation.</p><p>Overall, the plateau permafrost has undergone remarkable degradation during past decades, which are clearly proven by the increasing ALTs and ground temperature. Most of the permafrost on the QTP belongs to the unstable permafrost, meaning that permafrost over TPQ is very sensitive to climate warming. The permafrost interacts closely with water, soil, greenhouse gases emission and biosphere. Therefore, the permafrost degradation greatly affects the regional hydrology, ecology and even the global climate system.</p>


Sign in / Sign up

Export Citation Format

Share Document