scholarly journals Elevation is Associated with Human Skin Microbiomes

2019 ◽  
Vol 7 (12) ◽  
pp. 611
Author(s):  
Huan Li ◽  
Yijie Wang ◽  
Qiaoling Yu ◽  
Tianshu Feng ◽  
Rui Zhou ◽  
...  

Human skin microbiota plays a crucial role in the defense against pathogens, and is associated with various skin diseases. High elevation is positively correlated with various extreme environmental conditions (i.e., high ultraviolet radiation), which may exert selection pressure on skin microbiota, and therefore influence human health. Most studies regarding skin microbial communities have focused on low-elevation hosts. Few studies have explored skin microbiota in high-elevation humans. Here, we investigated the diversity, function, assembly, and co-occurrence patterns of skin microbiotas from 35 health human subjects across three body sites (forehead, opisthenar, and palm) and seven elevation gradients from 501 to 3431 m. Alpha diversity values (i.e., Shannon diversity and observed operational taxonomic units (OTUs)) decreased with increasing elevation regardless of the body site, while beta diversity (Jaccard and Bray–Curtis dissimilarities) showed an increasing trend with elevation. Elevation is a significant factor that influences human skin microbiota, even after controlling host-related factors. Skin microbiotas at high elevation with more than 3000 m on the Qinghai–Tibet Plateau, had a significant structural or functional separation from those at low elevation with less than 3000 m. Notably, the clustering coefficient, average degree, and network density were all lower at high-elevation than those at low-elevation, suggesting that high-elevation skin networks were more fragile and less connected. Phylogenetic analysis showed that human skin microbiotas are mainly dominated by stochastic processes (58.4%–74.6%), but skin microbiotas at high-elevation harbor a greater portion of deterministic processes than those at low-elevation, indicating that high-elevation may be conducive to the promotion of deterministic processes. Our results reveal that the filtering and selection of the changeable high-elevation environment on the Qinghai–Tibet Plateau may lead to less stable skin microbial community structures.

2021 ◽  
Vol 9 (3) ◽  
pp. 543
Author(s):  
Krzysztof Skowron ◽  
Justyna Bauza-Kaszewska ◽  
Zuzanna Kraszewska ◽  
Natalia Wiktorczyk-Kapischke ◽  
Katarzyna Grudlewska-Buda ◽  
...  

The skin is the largest organ of the human body and it protects the body from the external environment. It has become the topic of interest of researchers from various scientific fields. Microorganisms ensure the proper functioning of the skin. Of great importance, are the mutual relations between such microorganisms and their responses to environmental impacts, as dysbiosis may contribute to serious skin diseases. Molecular methods, used for microorganism identification, allow us to gain a better understanding of the skin microbiome. The presented article contains the latest reports on the skin microbiota in health and disease. The review discusses the relationship between a properly functioning microbiome and the body’s immune system, as well as the impact of internal and external factors on the human skin microbiome.


2021 ◽  
Author(s):  
Zheng Wang ◽  
Ningsheng Chen ◽  
Guisheng Hu ◽  
Yong Zhang ◽  
Genxu Wang ◽  
...  

Abstract Mount Gonggais located in the east of the Qinghai–Tibet Plateau; many debris flows have occurred in small basins with a small glacier cover or snow cover in this area. The hydrometeorological conditions that caused debris flows in this region are complex, making forecasting and early warning difficult. Previous studies for these small-glacial-covered basins have primarily considered rainfall as the only inducing factor of debris flows, and often the effects of temperature are neglected. Thus, we carried out a probabilistic analysis of variables derived from hydrometeorological factors for the Mount Gongga region, Sichuan, China, where debris flows were recorded on 14 days between 1988 and 2019. By analyzing hydrological characteristics when debris flows occurred, three distinct dominant trigger types could be identified. The results show that 7 (50%) of the observed debris flow events during the study period, high-intensity rainfall was the dominant trigger, snowmelt by high temperature was identified as the dominant trigger for 2 (14%). Furthermore, 5 (36%) debris flow events could be attributed to the combined effects of long-lasting (or short-medium) rainfall and sustained higher temperatures. We find that the differences between the trigger types are statistically significant, and a susceptibility prediction differentiating between trigger types can outperform simple rainfall-only situations. This study contributes to an improved understanding of the hydrometeorological impact on debris flow initiation in high elevation watersheds.


2018 ◽  
Vol 115 (25) ◽  
pp. E5786-E5795 ◽  
Author(s):  
Ashley A. Ross ◽  
Kirsten M. Müller ◽  
J. Scott Weese ◽  
Josh D. Neufeld

Skin is the largest organ of the body and represents the primary physical barrier between mammals and their external environment, yet the factors that govern skin microbial community composition among mammals are poorly understood. The objective of this research was to generate a skin microbiota baseline for members of the class Mammalia, testing the effects of host species, geographic location, body region, and biological sex. Skin from the back, torso, and inner thighs of 177 nonhuman mammals was sampled, representing individuals from 38 species and 10 mammalian orders. Animals were sampled from farms, zoos, households, and the wild. The DNA extracts from all skin swabs were amplified by PCR and sequenced, targeting the V3-V4 regions of bacterial and archaeal 16S rRNA genes. Previously published skin microbiome data from 20 human participants, sampled and sequenced using an identical protocol to the nonhuman mammals, were included to make this a comprehensive analysis. Human skin microbial communities were distinct and significantly less diverse than all other sampled mammalian orders. The factor most strongly associated with microbial community data for all samples was whether the host was a human. Within nonhuman samples, host taxonomic order was the most significant factor influencing skin microbiota, followed by the geographic location of the habitat. By comparing the congruence between host phylogeny and microbial community dendrograms, we observed that Artiodactyla (even-toed ungulates) and Perissodactyla (odd-toed ungulates) had significant congruence, providing evidence of phylosymbiosis between skin microbial communities and their hosts.


Phytotaxa ◽  
2018 ◽  
Vol 372 (3) ◽  
pp. 236 ◽  
Author(s):  
F. LUO ◽  
Q-M. YOU ◽  
Q-X. WANG

A new diatom species, Genkalia alpina sp. nov., was identified in high elevation lakes in the Mugecuo Scenic Area within the Sichuan Province of China. The area is located in the northern foot of the Hengduan Mountains between the western edge of the Sichuan Basin and the Qinghai-Tibet Plateau, belongs to the subtropical humid monsoon climate, at an altitude of 2600–3800m, with lake water originating mostly from the melting mountain snow. Light and scanning electron microscopy revealed that G. alpina valves are linear with two undulated margins and apices that are subcapitate in larger specimens, but slightly shorter in smaller specimens. The central area is elliptical, and the external proximal raphe ends are straight, or slightly deflected towards the primary valve side. Terminal raphe fissures are strongly bent towards the secondary side and they extend to mantle. Uniseriate striae continue uninterrupted from the valve face to the mantle. The present study is the first report of Genkalia species in China, and expands the geographical distribution of the genus, as well as the known diatom diversity of China.


2017 ◽  
Author(s):  
Ashley A. Ross ◽  
Kirsten Müller ◽  
J. Scott Weese ◽  
Josh D. Neufeld

AbstractSkin is the largest organ of the body and represents the primary physical barrier between mammals and their external environment. The objective of this research was to generate a skin microbiota baseline for members of the class Mammalia, testing the effects of host species, geographic location, body region, and biological sex. The back, torso, and inner thigh regions of 177 non-human mammals were collected to include representatives from 38 species and 10 mammalian orders. Animals were collected from local farms, zoos, households, and the wild. All samples were amplified using the V3-V4 16S rRNA gene region and sequenced using a MiSeq (Illumina). For reference, previously published skin microbiome data from 20 human participants, sampled using an identical protocol to the non-human mammals, were included in the analysis. Human skin was significantly less diverse than all other mammalian orders and the factor most strongly associated with community variation for all samples was whether the host was a human. Within non-human samples, host taxonomic order was the most significant factor influencing the skin community, followed by the geographic location of the habitat. By comparing the congruence between known host phylogeny and microbial community dendrograms, we observed that Artiodactyla (even-toed ungulates) and Perissodactyla (odd-toed ungulates) had significant congruence, providing first evidence of phylosymbiosis between skin communities and their hosts.SignificanceSkin forms a critical protective barrier between a mammal and its external environment. Baseline data on the mammalian skin microbiome is crucial for making informed decisions related to veterinary research and biodiversity conservation strategies, in addition to providing insight into mammalian evolutionary history. To our knowledge, this study represents the largest mammalian skin microbiota project to date. These findings demonstrate that human skin is distinct, not only from other Primates, but from all 10 mammalian orders sampled. Using phylosymbiosis analysis, we provide the first evidence that co-evolution may be occurring between skin communities and their mammalian hosts, which warrants more in-depth future studies of the relationships between mammals and their skin microbiota.


2019 ◽  
Vol 7 (1) ◽  
pp. 113-127 ◽  
Author(s):  
Yanhua Qu ◽  
Chunhai Chen ◽  
Ying Xiong ◽  
Huishang She ◽  
Yong E Zhang ◽  
...  

Abstract Known as the ‘third polar region’, the Qinghai-Tibet Plateau represents one of the harshest highland environments in the world and yet a number of organisms thrive there. Previous studies of birds, animals and humans have focused on well-differentiated populations in later stages of phenotypic divergence. The adaptive processes during the initial phase of highland adaptation remain poorly understood. We studied a human commensal, the Eurasian Tree Sparrow, which has followed human agriculture to the Qinghai-Tibet Plateau. Despite strong phenotypic differentiation at multiple levels, in particular in muscle-related phenotypes, highland and lowland populations show shallow genomic divergence and the colonization event occurred within the past few thousand years. In a one-month acclimation experiment investigating phenotypic plasticity, we exposed adult lowland tree sparrows to a hypoxic environment and did not observe muscle changes. Through population genetic analyses, we identified a signature of polygenic adaptation, whereby shifts in allele frequencies are spread across multiple loci, many of which are associated with muscle-related processes. Our results reveal a case of positive selection in which polygenic adaptation appears to drive rapid phenotypic evolution, shedding light on early stages of adaptive evolution to a novel environment.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Jin-kui Wu ◽  
Shi-qiang Zhang ◽  
Hao Wu ◽  
Shi-wei Liu ◽  
Yu Qin ◽  
...  

Actual evapotranspiration was observed by using eddy covariance (EC) technique, calculated by micrometeorological method the Bowen ratio energy balance (BREB) and measured by micro-lysimeter (ML) in the Suli alpine meadow which located in the northeastern edge of Qinghai-Tibet Plateau noted for its high elevation and cold environment during the growing season in 2011. Results showed that the energy balance ratio for half-hour data was 0.74. Without consideration of uncertainty, the evapotranspiration values estimated by BREB, ML, and EC were 270.6 mm, 238.9 mm, and 236.1 mm, respectively. Significant correlation existed between the evapotranspiration results by the three methods. Uncertainties of the evapotranspiration estimation by BREB, ML, and EC were 19.6 mm, 15.6 mm, and 15.1 mm, respectively. Deduced by facts on the natural and vegetation conditions, the value of evapotranspiration should be equal to that of precipitation, that is, about 252 mm. From this point, the evapotranspiration values estimated by the three methods were within a reliable range. The EC method has larger advantage and wider scope for the estimation of evapotranspiration in alpine meadow area.


2021 ◽  
Vol 13 (12) ◽  
pp. 2336
Author(s):  
Chaonan Chen ◽  
Li Tian ◽  
Lianqi Zhu ◽  
Yuanke Zhou

Albedo is a characterization of the Earth’s surface ability to reflect solar radiation, and control the amount of solar radiation absorbed by the land surface. Within the context of global warming, the temporal and spatial changes of the albedo and its response to climate factors remain unclear. Based on MCD43A3 (V005) albedo and meteorological data (i.e., temperature and precipitation), we analyzed the spatiotemporal variations of albedo (2000–2016) and its responses to climate change during the growing season on the Qinghai-Tibet Plateau (QTP). The results indicated an overall downward trend in the annual albedo during the growing season, the decrease rate was 0.25%/decade, and the monthly albedo showed a similar trend, especially in May, when the decrease rate was 0.53%/decade. The changes also showed regional variations, such as for the annual albedo, the areas with significant decrease and increase in albedo were 181.52 × 103 km2 (13.10%) and 48.82 × 103 km2 (3.52%), respectively, and the intensity of albedo changes in low-elevation areas was more pronounced than in high-elevation areas. In addition, the annual albedo-temperature/precipitation relationships clearly differed at different elevations. The albedo below 2000 m and at 5000–6000 m was mainly negatively correlated with temperature, while at 2000–4000 m it was mainly negatively correlated with precipitation. The contemporaneous temperature could negatively impact the monthly albedo in significant ways at the beginning of the growing season (May and June), whereas in the middle of the growing season (July and August), the albedo was mainly negatively correlated with precipitation, and at the end of the growing season (September), the albedo showed a weak correlation with temperature/precipitation.


2021 ◽  
Vol 17 (3) ◽  
Author(s):  
Zhong-Wen Jiang ◽  
Liang Ma ◽  
Chun-Rong Mi ◽  
Wei-Guo Du

Montane reptiles are predicted to move to higher elevations in response to climate warming. However, whether upwards-shifting reptiles will be physiologically constrained by hypoxia at higher elevations remains unknown. We investigated the effects of hypoxic conditions on preferred body temperatures (T pref ) and thermal tolerance capacity of a montane lizard ( Phrynocephalus vlangalii ) from two populations on the Qinghai–Tibet Plateau. Lizards from 2600 m a.s.l. were exposed to O 2 levels mimicking those at 2600 m (control) and 3600 m (hypoxia treatment). Lizards from 3600 m a.s.l. were exposed to O 2 levels mimicking those at 3600 m (control) and 4600 m (hypoxia treatment). The T pref did not differ between the control and hypoxia treatments in lizards from 2600 m. However, lizards from 3600 m selected lower body temperatures when exposed to the hypoxia treatment mimicking the O 2 level at 4600 m. Additionally, the hypoxia treatment induced lower critical thermal minimum (CT min ) in lizards from both populations, but did not affect the critical thermal maximum (CT max ) in either population. Our results imply that upwards-shifting reptiles may be constrained by hypoxia if a decrease in T pref reduces thermally dependent fitness traits, despite no observed effect on their heat tolerance.


Sign in / Sign up

Export Citation Format

Share Document