scholarly journals Enhanced proliferation of rabbit chondrocytes by using a well circulated nanoshock system

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sitansu Sekhar Nanda ◽  
Tuntun Wang ◽  
Hong Yeol Yoon ◽  
Seong Soo A. An ◽  
K. P. S. S. Hembram ◽  
...  

AbstractThe gold nanorods (GNRs) embedded alginate-chitosan (scaffold), which was designed and fabricated to produce efficient handling of the cell proliferations. Scaffold embedded GNR (SGNR) and NIR (near infrared) irradiations are developing into an interesting medical prognosis tool for rabbit chondrocyte (RC) proliferation. SGNR contained a pattern of uniform pores. Biocompatibility and cellular proliferation achieved by disclosures to NIR irradiations, providing high cell survival. SGNR and NIR irradiations could produce mechanical and biochemical cues for regulating RCs proliferations. To determine the thermal stress, it exposed RCs to 39–42 °C for 0–240 min at the start point of the cell culture cycle. It produced photothermal stress in cellular surrounding (cells located adjacent to and within scaffold) and it deals with the proliferation behavior of RC. All the processes were modeled with experimental criteria and time evolution process. Our system could help the cell proliferation by generating heat for cells. Hence, the present strategy could be implemented for supporting cell therapeutics after transplantation. This implementation would open new design techniques for integrating the interfaces between NIR irradiated and non-irradiated tissues.

2018 ◽  
Vol 18 (3) ◽  
pp. 287-294 ◽  
Author(s):  
Gustavo Alencastro Veiga Cruzeiro ◽  
Maristella Bergamo dos Reis ◽  
Vanessa Silva Silveira ◽  
Regia Caroline Peixoto Lira ◽  
Carlos Gilberto Carlotti Jr ◽  
...  

Background: Genetic and epigenetic modifications are closely related to tumor initiation and progression and can provide guidance for understanding tumor functioning, potentially leading to the discovery of new therapies. Studies have associated hypoxia-related genes to tumor progression and chemo/radioresistance in brain tumors. Information on the expression profile of hypoxiarelated genes in pediatric medulloblastoma, although scarce, may reveal relevant information that could support treatment decisions. Objective: Our study focused on evaluation the of CA9, CA12, HIF1A, EPAS1, SCL2A1 and VEGF genes in 41 pediatric fresh-frozen medulloblastoma sample. Additionally, we analyzed the effect of hypoxia and normoxia in the pediatric medulloblastoma cell-line UW402. Furthermore, we assessed the effects of HIF1A knockdown in cell-proliferation and methylation levels of genes related to hypoxia, apoptosis and autophagy. Method: qPCR was performed to evaluate mRNA levels, and Western blot to confirm HIF1A silencing in both patient samples and cell line. Pyrosequencing was performed to asses the methylation levels after HIF1A knockdown in the UW402 cell line. Results: A higher HIF1A mRNA level was observed in MB patients when compared to the cerebellum (non-tumor match). In UW402 MB cell-line, chemically induced hypoxic resulted in an increase of mRNA levels of HIF1A, VEGF, SCL2A1 and CA9 genes. Additionally, HIF1A knockdown induced a decrease in the expression of hypoxia related genes and a decrease of 30% in cell proliferation was also observed. Also, a significant increase in the methylation of ATG16L1 promoter and decrease in the methylation of EPAS1 promoter were observed after HIF1A knockdown. Conclusion: HIF1A knockdown in medulloblastoma cells lead to decreased cellular proliferation, suggesting that HIF1A can be a potential therapeutic target to be explored in the medulloblastoma. However, the mechanisms behind HIF1A protein stabilization and function are very complex and more data need to be generated to potentially use HIF1A as a therapeutical target.


MicroRNA ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 64-69 ◽  
Author(s):  
KumChol Ri ◽  
Chol Kim ◽  
CholJin Pak ◽  
PhyongChol Ri ◽  
HyonChol Om

Background: Recent studies have attempted to elucidate the function of super enhancers by means of microRNAs. Although the functional outcomes of miR-1301 have become clearer, the pathways that regulate the expressions of miR-1301 remain unclear. Objective: The objective of this paper was to consider the pathway regulating expression of miR- 1301 and miR-1301 signaling pathways with the inhibition of cell proliferation. Methods: In this study, we prepared the cell clones that the KLF6 super enhancer was deleted by means of the CRISPR/Cas9 system-mediated genetic engineering. Changes in miR-1301 expression after the deletion of the KLF6 super enhancer were evaluated by RT-PCR analysis, and the signal pathway of miR-1301 with inhibition of the cell proliferation was examined using RNA interference technology. Results: The results showed that miR-1301 expression was significantly increased after the deletion of the KLF6 super enhancer. Over-expression of miR-1301 induced by deletion of the KLF6 super enhancer also regulated the expression of p21 and p53 in human hepatoma cells. functional modeling of findings using siRNA specific to miR-1301 showed that expression level changes had direct biological effects on cellular proliferation in Human hepatoma cells. Furthermore, cellular proliferation assay was shown to be directly associated with miR-1301 levels. Conclusion: As a result, it was demonstrated that the over-expression of miR-1301 induced by the disruption of the KLF6 super enhancer leads to a significant inhibition of proliferation in HepG2 cells. Moreover, it was demonstrated that the KLF6 super enhancer regulates the cell-proliferative effects which are mediated, at least in part, by the induction of p21and p53 in a p53-dependent manner. Our results provide the functional significance of miR-1301 in understanding the transcriptional regulation mechanism of the KLF6 super enhancer.


2021 ◽  
Vol 8 (2) ◽  
pp. 147-158
Author(s):  
Raquel Martín-Sanz ◽  
José María Sayagués ◽  
Pilar García-Cano ◽  
Mikel Azcue-Mayorga ◽  
María del Carmen Parra-Pérez ◽  
...  

Proliferating trichilemmal tumours (PTT) are defined by a benign squamous cell proliferation inside a trichilemmal cystic (TC) cavity. A possible explanation of this proliferative phenomenon within the cyst may be molecular alterations in genes associated to cell proliferation, which can be induced by ultraviolet radiation. Among other genes, alterations on TP53 and DNA mismatch repair proteins (MMR) may be involved in the cellular proliferation observed in PTT. Based on this assumption, but also taking into account the close relationship between the sebaceous ducts and the external root sheath where TC develop, a MMR, a p53 expression assessment and a TP53 study were performed in a series of 5 PTT cases, including a giant one. We failed to demonstrate a MMR disorder on studied PTT, but we agree with previous results suggesting increased p53 expression in these tumours, particularly in proliferative areas. TP53 alteration was confirmed with FISH technique, demonstrating TP53 deletion in most cells.


2020 ◽  
Vol 29 ◽  
pp. 096368972091830 ◽  
Author(s):  
Ping Zhou ◽  
Andrew Irving ◽  
Huifang Wu ◽  
Juan Luo ◽  
Johana Aguirre ◽  
...  

Given the crucial role of microRNAs in the cellular proliferation of various types of cancers, we aimed to analyze the expression and function of a cellular proliferation-associated miR-188-5p in papillary thyroid carcinoma (PTC). Here we demonstrate that miR-188-5p is downregulated in PTC tumor tissues compared with the associated noncancerous tissues. We also validate that the miR-188-5p overexpression suppressed the PTC cancer cell proliferation. In addition, fibroblast growth factor 5 (FGF5) is observed to be downregulated in the PTC tumor tissues compared with the associated noncancerous tissues. Subsequently, FGF5 is identified as the direct functional target of miR-188-5p. Moreover, the silencing of FGF5 was found to inhibit PTC cell proliferation, which is the same pattern as miR-188-5p overexpression. These results suggest that miR-188-5p-associated silencing of FGF5 inhibits tumor cell proliferation in PTC. It also highlights the importance of further evaluating miR-188-5p as a potential biomarker and therapy target in PTC.


2015 ◽  
Vol 30 (1) ◽  
pp. 120-127 ◽  
Author(s):  
Binh Cao Quan Nguyen ◽  
Nozomi Taira ◽  
Hiroshi Maruta ◽  
Shinkichi Tawata

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Mary K. Popp ◽  
Imane Oubou ◽  
Colin Shepherd ◽  
Zachary Nager ◽  
Courtney Anderson ◽  
...  

Photothermal therapy (PTT) treatments have shown strong potential in treating tumors through their ability to target destructive heat preferentially to tumor regions. In this paper we demonstrate that PTT in a murine melanoma model using gold nanorods (GNRs) and near-infrared (NIR) light decreases tumor volume and increases animal survival to an extent that is comparable to the current generation of melanoma drugs. GNRs, in particular, have shown a strong ability to reach ablative temperatures quickly in tumors when exposed to NIR light. The current research tests the efficacy of GNRs PTT in a difficult and fast growing murine melanoma model using a NIR light-emitting diode (LED) light source. LED light sources in the NIR spectrum could provide a safer and more practical approach to photothermal therapy than lasers. We also show that the LED light source can effectively and quickly heatin vitroandin vivomodels to ablative temperatures when combined with GNRs. We anticipate that this approach could have significant implications for human cancer therapy.


2009 ◽  
Vol 201 (1) ◽  
pp. 141-150 ◽  
Author(s):  
N David Åberg ◽  
Inger Johansson ◽  
Maria A I Åberg ◽  
Johan Lind ◽  
Ulf E Johansson ◽  
...  

IGF-I treatment has been shown to enhance cell genesis in the brains of adult GH- and IGF-I-deficient rodents; however, the influence of GH therapy remains poorly understood. The present study investigated the effects of peripheral recombinant bovine GH (bGH) on cellular proliferation and survival in the neurogenic regions (subventricular zone (SVZ), and dentate gyrus of the hippocampus), as well as the corpus callosum, striatum, parietal cortex, and piriform cortex. Hypopituitarism was induced in female rats by hypophysectomy, and the rats were supplemented with thyroxine and cortisone acetate. Subsequently, the rats received daily s.c. injections of bGH for either 6 or 28 days respectively. Following 5 days of peripheral bGH administration, the number of bromodeoxyuridine (BrdU)-positive cells was increased in the hippocampus, striatum, parietal cortex, and piriform cortex after 6 and 28 days. In the SVZ, however, BrdU-positive cells increased only after 28 days of bGH treatment. No significant change was observed in the corpus callosum. In the hippocampus, after 28 days of bGH treatment, the number of BrdU/NeuN-positive cells was increased proportionally to increase the number of BrdU-positive cells. 3H-thymidine incorporation in vitro revealed that 24 h of bGH exposure was sufficient to increase cell proliferation in adult hippocampal progenitor cells. This study shows for the first time that 1) peripheral bGH treatment increased the number of newborn cells in the adult brain and 2) bGH exerted a direct proliferative effect on neuronal progenitor cells in vitro.


Sign in / Sign up

Export Citation Format

Share Document