HIF1A is Overexpressed in Medulloblastoma and its Inhibition Reduces Proliferation and Increases EPAS1 and ATG16L1 Methylation

2018 ◽  
Vol 18 (3) ◽  
pp. 287-294 ◽  
Author(s):  
Gustavo Alencastro Veiga Cruzeiro ◽  
Maristella Bergamo dos Reis ◽  
Vanessa Silva Silveira ◽  
Regia Caroline Peixoto Lira ◽  
Carlos Gilberto Carlotti Jr ◽  
...  

Background: Genetic and epigenetic modifications are closely related to tumor initiation and progression and can provide guidance for understanding tumor functioning, potentially leading to the discovery of new therapies. Studies have associated hypoxia-related genes to tumor progression and chemo/radioresistance in brain tumors. Information on the expression profile of hypoxiarelated genes in pediatric medulloblastoma, although scarce, may reveal relevant information that could support treatment decisions. Objective: Our study focused on evaluation the of CA9, CA12, HIF1A, EPAS1, SCL2A1 and VEGF genes in 41 pediatric fresh-frozen medulloblastoma sample. Additionally, we analyzed the effect of hypoxia and normoxia in the pediatric medulloblastoma cell-line UW402. Furthermore, we assessed the effects of HIF1A knockdown in cell-proliferation and methylation levels of genes related to hypoxia, apoptosis and autophagy. Method: qPCR was performed to evaluate mRNA levels, and Western blot to confirm HIF1A silencing in both patient samples and cell line. Pyrosequencing was performed to asses the methylation levels after HIF1A knockdown in the UW402 cell line. Results: A higher HIF1A mRNA level was observed in MB patients when compared to the cerebellum (non-tumor match). In UW402 MB cell-line, chemically induced hypoxic resulted in an increase of mRNA levels of HIF1A, VEGF, SCL2A1 and CA9 genes. Additionally, HIF1A knockdown induced a decrease in the expression of hypoxia related genes and a decrease of 30% in cell proliferation was also observed. Also, a significant increase in the methylation of ATG16L1 promoter and decrease in the methylation of EPAS1 promoter were observed after HIF1A knockdown. Conclusion: HIF1A knockdown in medulloblastoma cells lead to decreased cellular proliferation, suggesting that HIF1A can be a potential therapeutic target to be explored in the medulloblastoma. However, the mechanisms behind HIF1A protein stabilization and function are very complex and more data need to be generated to potentially use HIF1A as a therapeutical target.

1996 ◽  
Vol 317 (3) ◽  
pp. 925-931 ◽  
Author(s):  
Volker DANGEL ◽  
Jeanette GIRAY ◽  
Dieter RATGE ◽  
Hermann WISSER

The regulation of the expression of β-adrenoceptors (β-ARs) is not thoroughly understood. We demonstrate that the rat heart cell-line H9c2 expresses both β1- and β2-ARs. In radioligand-binding experiments, the maximal binding capacity of (-)-[125I]-iodocyanopindolol was determined as 18±0.6 fmol/mg of protein with a KD of 35.4±4.1 pM. Competitive radioligand-binding experiments with subtype-specific β-antagonists reveal a subtype ratio of β1- to β2-ARs of 29%:71%. With competitive reverse-transcriptase PCR we found β2-mRNA to be up to 1600 times more frequent than β1-mRNA. Treatment of the H9c2 cell-line with the β-adrenergic agonist (-)-isoproterenol (10-6 M), the antagonist (-)-propranolol (10-6 M) and the glucocorticoid dexamethasone (500 nM) induces regulatory effects on both the β-AR protein and mRNA level. Isoproterenol treatment leads to down-regulation of the total receptor number by 56±4%, due to a decrease in β2-ARs, while maintaining the β1-AR number constant. On the transcription level, both β1-and β2-mRNAs are decreased by 30% and 42% respectively. mRNA stability measurements reveal a reduced half-life of β2-mRNA from 9.3 h to 6.5 h after isoproterenol treatment. Incubation of cells with (-)-propranolol does not affect the amounts of β-ARs and their mRNAs. Dexamethasone induces a 1.8±0.2-fold increase in β-AR number over the basal level as well as a 1.9±0.2-fold increase in the amount of β2-mRNA. Because the half-life of β2-mRNA was unaffected by dexamethasone, the increased β2-mRNA level must be due to an enhanced transcription rate. The β1-mRNA levels are unchanged during dexamethasone-incubation of the cells. Our data clearly demonstrate that treatment of H9c2 rat heart cells with isoproterenol and dexamethasone induces alterations in the level of RNA stability as well as gene transcription, leading to altered receptor numbers.


Blood ◽  
2011 ◽  
Vol 118 (25) ◽  
pp. 6649-6659 ◽  
Author(s):  
Mattias Häger ◽  
Corinna Cavan Pedersen ◽  
Maria Torp Larsen ◽  
Mette Klarskov Andersen ◽  
Christoffer Hother ◽  
...  

Abstract Smad4 is important in the TGF-β pathway and required for transcriptional activation and inhibition of cell growth after TGF-β1 stimulation. We demonstrate that miR-130a is differentially expressed during granulopoiesis and targets Smad4 mRNA. The transcript for Smad4 is present throughout neutrophil maturation, but Smad4 protein is undetectable in the most immature cells, where miR-130a is highly expressed. Two miR-130a binding sites were identified in the 3′-untranslated region of the Smad4 mRNA. Overexpression of miR-130a in HEK293, A549, and 32Dcl3 cells repressed synthesis of Smad4 protein without affecting Smad4 mRNA level. Repression of Smad4 synthesis in a granulocytic cell line by miR-130a reduced its sensitivity to TGF-β1–induced growth inhibition. This effect was reversed by inhibiting the activity of miR-130a with an antisense probe or by expressing a Smad4 mRNA lacking miR-130a binding sites. High endogenous miR-130a and Smad4 mRNA levels and low expression of Smad4 protein were found in the t(8;21)(q22;q22) acute myelogenous leukemia–derived cell line Kasumi-1. When miR-130a was inhibited by an antisense RNA, the amount of Smad4 protein increased in Kasumi-1 cells and rendered it susceptible for TGF-β1–mediated cell growth inhibition. Our data indicate that miR-130a is involved in cell cycle regulation of granulocytic cells through engagement of Smad4 in the TGF-β pathway.


2019 ◽  
Vol 4 (1) ◽  
pp. 1-6
Author(s):  
Mahendra Kumar Trivedi ◽  
Dahryn Trivedi ◽  
Alice Branton ◽  
Gopal Nayak ◽  
Sambhu Charan Mondal ◽  
...  

Skin health and aging are the complex biological process influenced by several intrinsic (or endogenous) and extrinsic (or exogenous) factors. Various skin-based therapies are currently available to rejuvenate the skin, but they might be related with some side-effects such as scarring. The objective of the present study was to evaluate the effect of Consciousness Energy Healing Treatment (The Trivedi Effect®) on the human foreskin fibroblast (HFF-1) cell line and Dulbecco’s Modified Eagle Medium (DMEM) for skin health parameters like cell proliferation and synthesis of collagen. The rate of cellular proliferation in HFF-1 cells was identified, and the results found that the Biofield Energy Treated DMEM significantly (p ≤ 0.001) increased by 152.38% compared to the negative control group. Additionally, the cell proliferation was also significantly increased by 71.43% in the Biofield Energy Treated cells compared to the negative control group. Similarly, the collagen level was significantly (p ≤ 0.001) increased by 60.42% in the Biofield Energy Treated DMEM compared with the negative control group. Hence, the results exhibited a significant improvement of collagen synthesis and cellular proliferation in the Biofield Energy Treated DMEM for improving skin health. It can be concluded that The Trivedi Effect® - Consciousness Energy Healing Treatment might be a complementary and alternative approach with respect to the skin health, anti-aging in DMEM compared with the HFF-1 cell line. Therefore, the Biofield Energy Treated DMEM could be useful for the development of effective cosmetic products for the prevention and treatment of several skin problems such as erythema, contact dermatitis, skin aging, wrinkles, etc.


Author(s):  
Ehsan Soleymaninejadian

: Hydroxyl CoA Dehydrogenase (HADH) is one of the key enzymes in fatty acid β-oxidation. Recently, Hydroxyl CoA Dehydrogenase gene mutation and knockdown were found to be correlated with hyperinsulinemia and central nervous system diseases. As the HADH is one of the critical enzymes in the β-oxidation pathway, the interconnection between HADH and tumorigenicity still is unclear. So, we used Short hairpin RNA (ShRNA) to knock down short-chain hydroxyl CoA dehydrogenase (HADHSC) in human non-small lung carcinoma cell line, H1299, followed by checking cell proliferation, DNA replication, and mRNA level of some the most essential enzymes in glycolysis cycle and Krebs. Cell proliferation was checked by comparing the cell numbers in knockdown and control cells. DNA replication in the H1299 cell line was studied after applying 5-ethynyl 2’-deoxyuridine (EDU) and 4’-6 diamidino-2-phenylindol (DAPI) DNA synthesis Assay. The data revealed a significant decrease in cell proliferation and DNA replication in the cells that the HADHSC was knocked down compared to the control cells. Besides, mRNA levels of the enzymes that needed adenosine triphosphate (ATP) for their activity were decreased abruptly. Furthermore, lactate dehydrogenase (LDHA) mRNA level decreased, and glucose uptake assay showed a tremendous decrease in glucose consumption by H1299 cells with HADHSC knockdown.


2003 ◽  
Vol 70 (4) ◽  
pp. 367-372 ◽  
Author(s):  
Federica Cheli ◽  
Ioannis Politis ◽  
Luciana Rossi ◽  
Eleonora Fusi ◽  
Antonella Baldi

Effects of two natural (retinol and retinoic acid, RA) and one synthetic N-(4-hydroxyphenyl) retinamide (4-HPR) retinoids on proliferation and expression of urokinase-plasminogen activator (u-PA) by bovine mammary epithelial cells were examined. The BME-UV1 established bovine mammary epithelial cell line was used as a model system. All retinoids tested (retinol, RA and 4-HPR) were effective inhibitors of cell proliferation. When cells were cultured in the absence of fetal bovine calf serum (FBCS), inhibition occurred at concentrations as low as 1 nM for all retinoids tested. The effect of retinoids on cell proliferation was not dose-related when cells were cultured in the absence of FBCS. All retinoids (retinol, RA, 4-HPR), when used in the range 1 nM–10 μM (noncytotoxic concentrations), were equally effective and had identical inhibition patterns. Inhibition of cell proliferation by RA was apparent by 6 h and was higher after 24 h in culture. In contrast, when cells were cultured in the presence of FBCS, the effect of RA and retinol on cell proliferation was dose-related. RA and retinol inhibited cell proliferation (P<0·01) when added to the culture medium in concentrations as low as 10 nM and 100 nM, respectively. 4-HPR was inhibitory (P<0·01) in concentrations as low as 1 nM. Higher concentrations of 4-HPR in the range 1 nM–1 μM had no further effect on cell proliferation. None of the retinoids tested, when added to cultures in the presence or absence of FBCS, could completely arrest cell proliferation at noncytotoxic concentrations. RA at 1 μM inhibited (P<0·05) insulin or IGF-I-induced cell proliferation but had no effect (P>0·05) on u-PA mRNA levels or u-PA activity. Furthermore, RA inhibited cell proliferation in the presence of FBCS but had no effect (P>0·05) on u-PA mRNA levels. Thus, retinoids are effective inhibitors of bovine mammary epithelial cell proliferation and this growth inhibition does not seem to correlate with any changes in u-PA mRNA or u-PA activity.


Blood ◽  
1996 ◽  
Vol 87 (11) ◽  
pp. 4552-4560 ◽  
Author(s):  
N Komatsu ◽  
M Kunitama ◽  
M Yamada ◽  
T Hagiwara ◽  
T Kato ◽  
...  

UT-7 is a human megakaryoblastic leukemia cell line with absolute dependence on interleukin-3, granulocyte-macrophage colony-stimulating factor, or erythropoietin (EPO) for growth and survival. We investigated the effect of thrombopoietin (TPO), the ligand for the receptor encoded by c-mpl proto-oncogene, on the proliferation and differentiation of UT-7 and its sublines. We found that UT-7/GM, which is a subline of UT-7, but neither UT-7 nor UT-7/EPO, can proliferate in response to TPO. The subline, UT-7/TPO, was established from UT-7/GM by culture at lower concentrations of TPO. UT-7/TPO cells had morphologically mature megakaryocytic characteristics such as developed demarcation membrane in the cytoplasm and multinucleated appearance. This was also confirmed by the high expression of platelet factor-4 and glycoprotein IIb at the mRNA levels and by the high level of DNA content. UT-7/TPO can be maintained by TPO alone, with a doubling time of 24 hours in log growth phase. In the absence of TPO, the majority of the cells died within a few days. Thus, UT-7/TPO has an absolute dependence on TPO for growth and survival and has mature megakaryocytic features. The mRNA for c-mpl was detected in UT-7/TPO and, to a lesser degree, in UT-7/GM. The mRNA level of NF- E2 p45, reported to be an erythroid-specific transcription factor, was upregulated in UT-7/TPO, whereas it was down-regulated in the erythroid subline, UT-7/EPO. There were no significant differences in GATA-1 and GATA-2 mRNA levels among UT-7 and its sublines. Not only EPO but also TPO induced the tyrosine phosphorylation of JAK2 tyrosine kinase and STAT5-related protein. These findings indicate that UT-7/TPO would be a useful model with which to analyze the gene regulation of megakaryocytic maturation- associated proteins and to study the specific actions of TPO.


1993 ◽  
Vol 290 (1) ◽  
pp. 219-224 ◽  
Author(s):  
P Pradel ◽  
A Estival ◽  
C Seva ◽  
C Wicker-Planquart ◽  
A Puigserver ◽  
...  

In order to characterize the biological functions coupled to cholecystokinin (CCK) A and B receptors, the effects of gastrin(2-17 ds) and caerulein were compared. An isolated cell model, the pancreatic acinar cell line AR4-2J, was used and the experiments were carried out in serum-free media. Caerulein was found to evoke no mitogenic effects either alone or in the presence of the CCK antagonists L364,718 and CR1409. Gastrin(2-17 ds) increased cell proliferation by 2-fold with an IC50 of 150 pM, corresponding to the occupancy of the CCK B receptors. CR1409, at concentrations that fully occupied CCK B receptors, inhibited the gastrin(2-17 ds) effects. Caerulein enhanced chymotrypsinogen biosynthesis by 100% and the corresponding mRNA level by 75%; amylase biosynthesis and mRNA level were enhanced by 40% only. Half-maximal increases in chymotrypsin activity and mRNA level were recorded in response to caerulein at concentrations of 100 pM and 50 pM respectively. Gastrin(2-17 ds) at 100 nM enhanced chymotrypsinogen biosynthesis by 26% and its mRNA level by 35%; these responses were lower than those evoked by 0.1 nM caerulein. Furthermore, CR1409 completely inhibited caerulein- and gastrin(2-17 ds)-stimulated chymotrypsinogen synthesis, with similar IC50 (4 microM). These results suggest that both peptides induced the synthesis of the secretory enzyme after occupancy of CCK A receptors.


2019 ◽  
Author(s):  
Ping Luo ◽  
ShuGui Wu ◽  
ChaoMing Zhou ◽  
Xia Yuan ◽  
HongMi Li ◽  
...  

AbstractPURPOSECisplatin resistance is still a serious problem in clinic. However, the underlying mechanism remains unclear. In this study investigated the drug resistance of cisplatin by the cisplatin resistance cell line HCT116R.RESULTSIn this study, we found that LncRNA MIR4435-2HG level dramatically increased in the cisplatin resistance cell line HCT116R. Knockdown of MIR4435-2HG in HCR116R significantly restored the sensitivity to cisplatin, inhibited cell proliferation and promoted cell apoptosis. Furthermore, Nrf2 and HO-1 mRNA level, as the critical molecular of the oxidative stress pathway, was inhibited by the siRNA targeting to MIR4435-2HG, displaying MIR4435-2HG-mediated cisplatin resistance through the Nrf2/HO-1 pathway.CONCLUSIONOur findings demonstrated that LncRNA MIR4435-2HG as a main factor could drive the cisplatin resistance of HCT116.


2017 ◽  
Vol 45 (2) ◽  
pp. 662-672 ◽  
Author(s):  
Hao Jin ◽  
Shaobo Zhou ◽  
Song Yang ◽  
Hai-ming Cao

Objective To discuss the relevance of heparanase and syndecan-1 and regulation of the heparanase-syndecan1 axis in the invasiveness of gallbladder carcinoma cells. Methods 1. Generation of a gallbladder cancer cell line overexpressing a heparanase (GBD-SD) transgene. 2. Western blot analysis of syndecan-1 levels of GBD-SD and control gallbladder carcinoma (GBC-SD) cells. 3. RT-PCR analysis of syndecan-1 mRNA levels of GBD-SD and GBC-SD. 4. Evaluation of invasion and migration of GBD-SD and GBC-SD cells. Results 1. Heparanase expression in GBD-SD cells was significantly increased. 2. The syndecan-1 mRNA level of GBD-SD cells was significantly lower compared with that of GBC-SD cells. 3. The syndecan-1 DNA copy number in GBD-SD cells was significantly lower compared with that of GBC-SD. 4. The invasiveness and migration of GBD-SD cells were significantly higher compared with GBC-SD cells. Conclusions 1. The expression of heparanase negatively correlated with that of syndecan-1 in a gallbladder carcinoma cell line. 2. The expression of heparanase and syndecan-1 in gallbladder carcinomas negatively correlated, similar to other tumours. 3. The heparanase/syndecan1 axis in gallbladder carcinoma plays an important role in the invasion and metastasis, thus providing a new therapeutic target. 4. Further research is required to identify the detailed mechanisms.


2012 ◽  
Vol 48 ◽  
pp. 160
Author(s):  
G. Alencastro Veiga Cruzeiro ◽  
V.S. Silveira ◽  
A.F. Andrade ◽  
V.K. Suazo ◽  
L.G. Tone ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document