scholarly journals Shallow stability and parameter sensitivity analysis of soil slope with frame protection under rainfall seepage

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jifeng Lian ◽  
Jiujiang Wu

AbstractFrame protection is a commonly used solution to maintain the shallow stability of soil slope under rainfall seepage. Currently, the frame structure's design is empirical, and its theoretical analysis method considering the influence of seepage is scarce. Based on the instability model of the infinite slope, the shallow stability calculation model of soil slope under the rectangular frame protection is established in this paper. The calculation results show that it is beneficial to maintain the shallow slope stability by reducing the skeleton spacing and increasing the cross-sectional size of the frame structure. Also, geometric parameters' sensitivity analysis of the frame structure is carried out based on the orthogonal experimental design methods. Therein, an optimal scheme evaluation function was constructed to balance the relationship between the safety factor and the construction material consumption. The calculation model and results included in this paper can guide the design of the rectangular frame protection to soil slope under rainfall seepage.

1992 ◽  
Vol 114 (1) ◽  
pp. 166-173 ◽  
Author(s):  
Kyung K. Choi ◽  
Jae Hwan Lee

A continuum design sensitivity analysis method of dynamic frequency response of structural systems is developed using the adjoint variable and direct differentiation methods. A variational approach with a non-selfadjoint operator for complex variable is used to retain the continuum elasticity formulation throughout derivation of design sensitivity results. Sizing design variables such as thickness and cross-sectional area of structural components are considered for the design sensitivity analysis. A numerical implementation method of continuum design sensitivity analysis results is developed using postprocessing analysis data of COSMIC/NASTRAN finite element code to get the design sensitivity information of displacement and stress performance measures of the structures. The numerical method is tested using basic structural component such as a plate supported by shock absorbers and a vehicle chassis frame structure for sizing design variables. Accurate design sensitivity results are obtained even in the vicinity of resonance.


2012 ◽  
Vol 174-177 ◽  
pp. 2012-2015
Author(s):  
Xiao Long Zhou ◽  
Ying Min Li ◽  
Lin Bo Song ◽  
Qian Tan

There are two typical seismic damage characteristics to the masonry building with frame shear wall structure at first two stories, and the lateral stiffness ratio of the third storey to the second storey is one of the key factors mostly affecting the seismic performance of this kind of building. However, some factors are not considered sufficiently in current Chinese seismic codes. According to the theory of performance-based seismic design, the seismic performance of this kind of structure is analyzed in this paper by taking time-history analysis on models which with different storey stiffness ratios. The results show that when the lateral stiffness ratio controlled in a reasonable range, the upper masonry deformation can be ensured in a range of elastic roughly, and the bottom frame can be guaranteed to have sufficient deformation and energy dissipation capacity. Finally, according to the seismic performance characteristics of masonry building with frame shear wall structure at first two stories, especially the characteristics under strong earthquakes, a method of simplified calculation model for the upper masonry is discussed in this paper.


2005 ◽  
Vol 475-479 ◽  
pp. 1533-1536
Author(s):  
Liu Ding Tang ◽  
Xue Bin Zhang ◽  
Bing Zhe Li

Based on equivalent transformation by means of mathematically rigorous analytics, the stress analysis of heavy cross-sectional, non-homogeneous Functionally Graded Composites (FGCs) has been performed by the layering calculation model in axis-symmetrical mechanics problems. The partially calculated results of the non-homogeneous layered thick-walled metal tube are similar to the design and practice of machine forging moulds manufactured with special welding electrodes developed by the German Capilla Company. The analysis is used complementary to the investigation of the quantitative analysis of thermo-mechanical properties, or the so-called anti-design and the optimization of the graded structure for FGCs.


Author(s):  
Giuseppe Muscolino ◽  
Roberta Santoro ◽  
Alba Sofi

Interval sensitivity analysis of linear discretized structures with uncertain-but-bounded parameters subjected to stationary multi-correlated Gaussian stochastic processes is addressed. The proposed procedure relies on the use of the so-called Interval Rational Series Expansion (IRSE), recently proposed by the authors as an alternative explicit expression of the Neumann series expansion for the inverse of a matrix with a small rank-r modification and properly extended to handle also interval matrices. The IRSE allows to derive approximate explicit expressions of the interval sensitivities of the mean-value vector and Power Spectral Density (PSD) function matrix of the interval stationary stochastic response. The effectiveness of the proposed method is demonstrated through numerical results pertaining to a seismically excited three-storey frame structure with interval Young’s moduli of some columns.


2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Shuaihua Ye ◽  
Zhuangfu Zhao

Based on the equivalent mass-spring model and considering the coupling effect between creep soil and prestressed anchors, the dynamic calculation model of prestressed anchors with frame structure is established. The soil mass is expressed in the form of concentrated mass. The action of the frame structure on the soil is treated as a parallel coupling of a linear spring and a linear damper, and the free section of the anchor is treated as a linear spring. Considering the creep characteristics, the soil is regarded as a Generalized Kelvin body and the anchoring section of the anchor is regarded as an equivalent spring body, which are coupled in parallel. Considering the effect of slope height, the dynamic calculation model is solved and the seismic response is analyzed. Finally, an engineering example is used to verify the calculation method in this paper, and the results are compared with the shaking table test and numerical simulation. It shows that the calculation model proposed in this paper is safe and reasonable for the seismic design and analysis of the slope supported by prestressed anchors with frame structure.


2013 ◽  
Vol 35 (3) ◽  
pp. 25-43 ◽  
Author(s):  
Karolina Górska ◽  
Zbigniew Muszyński ◽  
Jarosław Rybak

Abstract This work discusses the fundamentals of designing deep excavation support by means of observational method. The effective tools for optimum designing with the use of the observational method are both inclinometric and geodetic monitoring, which provide data for the systematically updated calibration of the numerical computational model. The analysis included methods for selecting data for the design (by choosing the basic random variables), as well as methods for an on-going verification of the results of numeric calculations (e.g., MES) by way of measuring the structure displacement using geodetic and inclinometric techniques. The presented example shows the sensitivity analysis of the calculation model for a cantilever wall in non-cohesive soil; that analysis makes it possible to select the data to be later subject to calibration. The paper presents the results of measurements of a sheet pile wall displacement, carried out by means of inclinometric method and, simultaneously, two geodetic methods, successively with the deepening of the excavation. This work includes also critical comments regarding the usefulness of the obtained data, as well as practical aspects of taking measurement in the conditions of on-going construction works.


Sign in / Sign up

Export Citation Format

Share Document