scholarly journals A homogeneous bioluminescent immunoassay to probe cellular signaling pathway regulation

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Byounghoon Hwang ◽  
Laurie Engel ◽  
Said A. Goueli ◽  
Hicham Zegzouti

AbstractMonitoring cellular signaling events can help better understand cell behavior in health and disease. Traditional immunoassays to study proteins involved in signaling can be tedious, require multiple steps, and are not easily adaptable to high throughput screening (HTS). Here, we describe a new immunoassay approach based on bioluminescent enzyme complementation. This immunoassay takes less than two hours to complete in a homogeneous “Add and Read” format and was successfully used to monitor multiple signaling pathways’ activation through specific nodes of phosphorylation (e.g pIκBα, pAKT, and pSTAT3). We also tested deactivation of these pathways with small and large molecule inhibitors and obtained the expected pharmacology. This approach does not require cell engineering. Therefore, the phosphorylation of an endogenous substrate is detected in any cell type. Our results demonstrate that this technology can be broadly adapted to streamline the analysis of signaling pathways of interest or the identification of pathway specific inhibitors.

2021 ◽  
Vol 218 (7) ◽  
Author(s):  
Tobias Kull ◽  
Timm Schroeder

Cells constantly sense their environment, allowing the adaption of cell behavior to changing needs. Fine-tuned responses to complex inputs are computed by signaling pathways, which are wired in complex connected networks. Their activity is highly context-dependent, dynamic, and heterogeneous even between closely related individual cells. Despite lots of progress, our understanding of the precise implementation, relevance, and possible manipulation of cellular signaling in health and disease therefore remains limited. Here, we discuss the requirements, potential, and limitations of the different current technologies for the analysis of hematopoietic stem and progenitor cell signaling and its effect on cell fates.


2022 ◽  
Vol 43 ◽  
pp. 1-3
Author(s):  
A Vernengo ◽  
◽  
Z Li ◽  
S Grad

The intervertebral disc (IVD) has long been known as a mechanical structure responsible for spinal flexibility and load distribution, while its dysfunction is a frequent source of pain and disability. In recent years, multiple signaling pathways contributing to the regulation of the IVD homeostasis in health and disease have been discovered. At the same time, crosstalk of the IVD with adjacent tissues, immune cells, nerve cells and systemic mediators has been identified as an essential mechanism of degeneration and repair. Such discoveries open the door for the design of new therapeutic and diagnostic targets. This Disc Biology Special Issue provides an abstract of cutting-edge findings in terms of tissue regulation, therapeutic intervention and preclinical models, which will help to improve the management of IVD disorders.


2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Hicham Zegzouti ◽  
Byounghoon (Brian) Hwang ◽  
Laurie Engel ◽  
Juliano Alves ◽  
Said Goueli

2019 ◽  
Vol 47 (5) ◽  
pp. 1543-1555 ◽  
Author(s):  
Maurizio Mongiat ◽  
Simone Buraschi ◽  
Eva Andreuzzi ◽  
Thomas Neill ◽  
Renato V. Iozzo

Abstract The extracellular matrix is a network of secreted macromolecules that provides a harmonious meshwork for the growth and homeostatic development of organisms. It conveys multiple signaling cascades affecting specific surface receptors that impact cell behavior. During cancer growth, this bioactive meshwork is remodeled and enriched in newly formed blood vessels, which provide nutrients and oxygen to the growing tumor cells. Remodeling of the tumor microenvironment leads to the formation of bioactive fragments that may have a distinct function from their parent molecules, and the balance among these factors directly influence cell viability and metastatic progression. Indeed, the matrix acts as a gatekeeper by regulating the access of cancer cells to nutrients. Here, we will critically evaluate the role of selected matrix constituents in regulating tumor angiogenesis and provide up-to-date information concerning their primary mechanisms of action.


1989 ◽  
Vol 264 (31) ◽  
pp. 18356-18362 ◽  
Author(s):  
M Mitsuhashi ◽  
T Mitsuhashi ◽  
D G Payan

Sign in / Sign up

Export Citation Format

Share Document