scholarly journals Neutrophil-derived reactive oxygen species promote tumor colonization

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jianghong Zhong ◽  
Qijing Li ◽  
Huqiao Luo ◽  
Rikard Holmdahl

AbstractA single-nucleotide polymorphism of neutrophil cytosolic factor 1 (Ncf1), leading to an impaired generation of reactive oxygen species (ROS), is a causative genetic factor for autoimmune disease. To study a possible tumor protection effect by the Ncf1 mutation in a manner dependent on cell types, we used experimental mouse models of lung colonization assay by B16F10 melanoma cells. We observed fewer tumor foci in Ncf1 mutant mice, irrespective of αβT, γδT, B-cell deficiencies, or of a functional Ncf1 expression in CD68-positive monocytes/macrophages. The susceptibility to tumor colonization was restored by the human S100A8 (MRP8) promoter directing a functional Ncf1 expression to granulocytes. This effect was associated with an increase of both ROS and interleukin 1 beta (IL-1β) production from lung neutrophils. Moreover, neutrophil depletion by anti-Ly6G antibodies increased tumor colonization in wild type but failed in the Ncf1 mutant mice. In conclusion, tumor colonization is counteracted by ROS-activated and IL-1β-secreting tissue neutrophils.

Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1243
Author(s):  
Eunus S. Ali ◽  
Grigori Y. Rychkov ◽  
Greg J. Barritt

TRPM2 channels admit Ca2+ and Na+ across the plasma membrane and release Ca2+ and Zn2+ from lysosomes. Channel activation is initiated by reactive oxygen species (ROS), leading to a subsequent increase in ADP-ribose and the binding of ADP-ribose to an allosteric site in the cytosolic NUDT9 homology domain. In many animal cell types, Ca2+ entry via TRPM2 channels mediates ROS-initiated cell injury and death. The aim of this review is to summarise the current knowledge of the roles of TRPM2 and Ca2+ in the initiation and progression of chronic liver diseases and acute liver injury. Studies to date provide evidence that TRPM2-mediated Ca2+ entry contributes to drug-induced liver toxicity, ischemia–reperfusion injury, and the progression of non-alcoholic fatty liver disease to cirrhosis, fibrosis, and hepatocellular carcinoma. Of particular current interest are the steps involved in the activation of TRPM2 in hepatocytes following an increase in ROS, the downstream pathways activated by the resultant increase in intracellular Ca2+, and the chronology of these events. An apparent contradiction exists between these roles of TRPM2 and the role identified for ROS-activated TRPM2 in heart muscle and in some other cell types in promoting Ca2+-activated mitochondrial ATP synthesis and cell survival. Inhibition of TRPM2 by curcumin and other “natural” compounds offers an attractive strategy for inhibiting ROS-induced liver cell injury. In conclusion, while it has been established that ROS-initiated activation of TRPM2 contributes to both acute and chronic liver injury, considerable further research is needed to elucidate the mechanisms involved, and the conditions under which pharmacological inhibition of TRPM2 can be an effective clinical strategy to reduce ROS-initiated liver injury.


Nanomedicine ◽  
2021 ◽  
Author(s):  
Muktashree Saha ◽  
Anil P  Bidkar ◽  
Siddhartha S  Ghosh

Aim: The primary aim of this study was to develop biomimetic nanocarriers for specific homologous targeting of the anticancer drugs ammonium pyrrolidine dithiocarbamate (PDTC) and doxorubicin. Methods: Membranous nanovesicles were synthesized from a breast cancer cell line (MCF7) by syringe extrusion process and were loaded with PDTC and doxorubicin. Besides their abilities for self-homing, the drug loaded nanovesicles showed anti-cell proliferative effects via the generation of reactive oxygen species. Results: The nanovesicles demonstrated efficient internalization via homologous targeting. Delivery of PDTC showed a higher killing effect for homologous cell targeting than other cell types. Experimental results demonstrated increased antiproliferative potency of PDTC, which induced apoptosis via reactive oxygen species generation. Conclusion: The developed membrane-derived nanocarrier is an attractive biocompatible system for ex vivo targeted drug delivery.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yi-Jen Peng ◽  
Ching-Tsung Peng ◽  
Yi-Hsuan Lin ◽  
Gu-Jiun Lin ◽  
Shing-Hwa Huang ◽  
...  

Purpose. Interleukin-1α (IL-1α) is a potent cytokine that plays a role in inflammatory arthritis and bone loss. Decoy receptor 3 (DCR3) is an immune modulator of monocytes and macrophages. The aim of this study was to investigate the mechanism of DCR3 in IL-1α-induced osteoclastogenesis. Methods. We treated murine macrophages with DCR3 during receptor activator of nuclear factor kappa Β ligand- (RANKL-) plus IL-1α-induced osteoclastogenesis to monitor osteoclast formation by tartrate-resistant acid phosphatase (TRAP) staining. Osteoclast activity was assessed using a pit formation assay. The mechanisms of inhibition were studied by biochemical analyses, including RT-PCR, immunofluorescent staining, flow cytometry, an apoptosis assay, immunoblotting, and ELISA. Results. DCR3 suppresses IL-1α-induced osteoclastogenesis in both primary murine bone marrow-derived macrophages (BMM) and RAW264.7 cells as it inhibits bone resorption. DCR3 induces RANKL-treated osteoclast precursor cells to express IL-1α, secretory IL-1ra (sIL-1ra), intracellular IL-1ra (icIL-1ra), reactive oxygen species (ROS), and Fas ligand and to activate IL-1α-induced interleukin-1 receptor-associated kinase 4 (IRAK4). The suppression of DCR3 during RANKL- or IL-1α-induced osteoclastogenesis may be due to the abundant secretion of IL-1ra, accumulation of ROS, and expression of Fas ligand in apoptotic osteoclast precursor cells. Conclusions. We concluded that there is an inhibitory effect of DCR3 on osteoclastogenesis via ROS accumulation and ROS-induced Fas ligand, IL-1α, and IL-1ra expression. Our results suggested that the upregulation of DCR3 in preosteoclasts might be a therapeutic target in inflammatory IL-1α-induced bone resorption.


Blood ◽  
2005 ◽  
Vol 105 (7) ◽  
pp. 2970-2972 ◽  
Author(s):  
Andrew S. Cowburn ◽  
Jessica F. White ◽  
John Deighton ◽  
Sarah R. Walmsley ◽  
Edwin R. Chilvers

Abstract In most cell types constitutive and ligand-induced apoptosis is a caspase-dependent process. In neutrophils, however, the broad-spectrum caspase inhibitor z-VAD-fmk enhances tumor necrosis factor-α (TNFα)-induced cell death, and this has been interpreted as evidence for caspase-dependent and -independent cell death pathways. Our aim was to determine the specificity of the effect of z-VAD-fmk in neutrophils and define the potential mechanism of action. While confirming that z-VAD-fmk (> 100 μM) enhances TNFα-induced neutrophil apoptosis, lower concentrations (1-30 μM) completely blocked TNFα-stimulated apoptosis. Boc-D-fmk, a similar broad-spectrum caspase inhibitor, and z-IETD-fmk, a selective caspase-8 inhibitor, caused a concentration-dependent inhibition of only TNFα-stimulated apoptosis. Moreover, the caspase-9 inhibitor, Ac-LEHD-cmk, had no effect on TNFα-induced apoptosis, and z-VAD-fmk and Boc-D-fmk inhibited TNFα-stimulated reactive oxygen species (ROS) generation. These data suggest that TNFα-induced apoptosis in neutrophils is fully caspase dependent and uses a mitochondrial-independent pathway and that the proapoptotic effects of z-VAD-fmk are compound specific and ROS independent.


Author(s):  
Carola Kryschi ◽  
W. Neuhuber ◽  
Damjana Drobne ◽  
Luitpold V. R. Distel ◽  
Stefanie Klein ◽  
...  

Superparamagnetic iron oxide nanoparticles were shown to exhibit a high performance as X-ray dosage enhancer in tumor cells. The radio-enhancing potential of uncoated and citrate-coated SPIONs was comprehensively studied for tumor and healthy cells. Pristine and citrate-coated SPIONs drastically differ in their water dispersibility and adsorption affinity for proteins. The activities of antioxidant enzymes in the healthy cells were shown to be significantly distinct from those in the tumor cells as containing a much higher H2O2 concentration. Pristine SPIONs catalyzed the Fenton reaction of hydrogen peroxide to the highly reactive hydroxyl radical in all cell types. In contrast, intracellular citrate-stabilized SPIONs were shown t o be non-toxic and to do not affect the formation of reactive oxygen species. X-ray irradiation of citrate-stabilized SPIONs, when internalized by tumor cells, significantly boost the formation of hydroxyl radicals, whereas the healthy cells preserved their initial levels of reactive oxygen species.


2022 ◽  
Vol 12 ◽  
Author(s):  
Zhenqing Wang ◽  
Yun Xie ◽  
Haicheng Chen ◽  
Jiahui Yao ◽  
Linyan Lv ◽  
...  

Male infertility is a major health issue with an estimated prevalence of 4.2% of male infertility worldwide. Oxidative stress (OS) is one of the main causes of male infertility, which is characterized by excessive reactive oxygen species (ROS) or lack of antioxidants. Meanwhile, it is reported that oxidative stress plays an important role in the spermatogenic impairment in Inner mitochondrial membrane peptidase 2-like (Immp2l) mutant mice. In this study, we focused on the potential mechanism of Guilingji in protecting the spermatogenic functions in Immp2l mutant mice. The results revealed that Immp2l mutant mice exhibit impaired spermatogenesis and histology shows seminiferous tubules with reduced spermatogenic cells. After administration of Guilingji [150 mg/kg per day intragastric gavage], however, alleviated spermatogenesis impairment and reversed testis histopathological damage and reduced apoptosis. What’s more, western blotting and the levels of redox classic markers revealed that Guilingji can markedly reduce reactive oxygen species. Moreover, Guilingji treatment led to inhibition of the phosphorylation of mitogen-activated protein kinase (MAPK), regulated apoptosis in the cells. In summary, Guilingji can improve spermatogenesis in Immp2l mutant mice by regulating oxidation-antioxidant balance and MAPK pathway. Our data suggests that Guilingji may be a promising and effective antioxidant candidate for the treatment of male infertility.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4300-4300
Author(s):  
Serge Côté ◽  
Nathalie Dussault ◽  
Carl Simard

Abstract Hematopoietic cells mature in the bone marrow under the control of a diversity of growth factors and the influence of various cell types producing superoxide and other reactive oxygen species (ROS). As ROS may regulate activities of redox-sensitive enzymes implicated in a wide range of cellular processes, we have exposed the human megakaryocytic cell line M-07e to hydrogen peroxide (H2O2) at concentrations that increased intracellular ROS and examined whether expression of the megakaryocytic programme could be enhanced. The growth-factor dependent M-07e cells display surface markers characteristic of both early myeloid progenitors and more committed members of the magakaryocyte (Mk) lineage, such as glycoproteins GPIIb-IIIa (CD41) and GPIb (CD42). H2O2 significantly reduced cell proliferation without affecting viability. After 4 days of exposure to this reagent, expression of the early Mk marker CD41 was 1.2 times higher than that of control cells. Although no change in the expression of the late Mk marker CD42 was detected, exposure to H2O2 was found to increase the incidence of multinucleate cells, polyploidy and abnormal microtubule organising centre numbers. Investigation of this phenomenon on synchronized M-07e cells revealed that H2O2 arrested cytokinesis at a late stage and that some nuclei were still able to incorporate bromodeoxyuridine (BrdU). Cell division was similarly impaired when M-07e cells were either exposed to botulin toxin C3 transferase or Y-27362 inhibitor, suggesting that H2O2 treatments affected members of the Rho family of small GTP-binding proteins and/or their effectors. Together, these findings indicate that endoreplication in Mk may be linked to changes in the cellular redox state of these cells and support the concept that differentiation and polyploidization are independently regulated events.


Sign in / Sign up

Export Citation Format

Share Document