scholarly journals Microfluidic chips provide visual access to in situ soil ecology

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Paola Micaela Mafla-Endara ◽  
Carlos Arellano-Caicedo ◽  
Kristin Aleklett ◽  
Milda Pucetaite ◽  
Pelle Ohlsson ◽  
...  

AbstractMicrobes govern most soil functions, but investigation of these processes at the scale of their cells has been difficult to accomplish. Here we incubate microfabricated, transparent ‘soil chips’ with soil, or bury them directly in the field. Both soil microbes and minerals enter the chips, which enables us to investigate diverse community interdependences, such as inter-kingdom and food-web interactions, and feedbacks between microbes and the pore space microstructures. The presence of hyphae (‘fungal highways’) strongly and frequently increases the dispersal range and abundance of water-dwelling organisms such as bacteria and protists across air pockets. Physical forces such as water movements, but also organisms and especially fungi form new microhabitats by altering the pore space architecture and distribution of soil minerals in the chip. We show that soil chips hold a large potential for studying in-situ microbial interactions and soil functions, and to interconnect field microbial ecology with laboratory experiments.

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4570
Author(s):  
Aman Turakhanov ◽  
Albina Tsyshkova ◽  
Elena Mukhina ◽  
Evgeny Popov ◽  
Darya Kalacheva ◽  
...  

In situ shale or kerogen oil production is a promising approach to developing vast oil shale resources and increasing world energy demand. In this study, cyclic subcritical water injection in oil shale was investigated in laboratory conditions as a method for in situ oil shale retorting. Fifteen non-extracted oil shale samples from Bazhenov Formation in Russia (98 °C and 23.5 MPa reservoir conditions) were hydrothermally treated at 350 °C and in a 25 MPa semi-open system during 50 h in the cyclic regime. The influence of the artificial maturation on geochemical parameters, elastic and microstructural properties was studied. Rock-Eval pyrolysis of non-extracted and extracted oil shale samples before and after hydrothermal exposure and SARA analysis were employed to analyze bitumen and kerogen transformation to mobile hydrocarbons and immobile char. X-ray computed microtomography (XMT) was performed to characterize the microstructural properties of pore space. The results demonstrated significant porosity, specific pore surface area increase, and the appearance of microfractures in organic-rich layers. Acoustic measurements were carried out to estimate the alteration of elastic properties due to hydrothermal treatment. Both Young’s modulus and Poisson’s ratio decreased due to kerogen transformation to heavy oil and bitumen, which remain trapped before further oil and gas generation, and expulsion occurs. Ultimately, a developed kinetic model was applied to match kerogen and bitumen transformation with liquid and gas hydrocarbons production. The nonlinear least-squares optimization problem was solved during the integration of the system of differential equations to match produced hydrocarbons with pyrolysis derived kerogen and bitumen decomposition.


2001 ◽  
Vol 33 ◽  
pp. 304-310 ◽  
Author(s):  
Karen Junge ◽  
Christopher Krembs ◽  
Jody Deming ◽  
Aaron Stierle ◽  
Hajo Eicken

AbstractMicrobial populations and activity within sea ice have been well described based on bulk measurements from melted sea-ice samples. However, melting destroys the micro-environments within the ice matrix and does not allow for examination of microbial populations at a spatial scale relevant to the organism. Here, we describe the development of a new method allowing for microscopic observations of bacteria localized within the three-dimensional network of brine inclusions in sea ice under in situ conditions. Conventional bacterial staining procedures, using the DNA-specific fluorescent stain DAPI, epifluorescence microscopy and image analysis, were adapted to examine bacteria and their associations with various surfaces within microtomed sections of sea ice at temperatures from −2° to −15°C. The utility and sensitivity of the method were demonstrated by analyzing artificial sea-ice preparations of decimal dilutions of a known bacterial culture. When applied to natural, particle-rich sea ice, the method allowed distinction between bacteria and particles at high magnification. At lower magnifications, observations of bacteria could be combined with those of other organisms and with morphology and particle content of the pore space. The method described here may ultimately aid in discerning constraints on microbial life at extremely low temperatures.


2021 ◽  
Author(s):  
Wisely Chua ◽  
Si En Poh ◽  
Hao Li

The human skin is our outermost layer and serves as a protective barrier against external insults. Advances in next generation sequencing have enabled the discoveries of a rich and diverse community of microbes - bacteria, fungi and viruses that are residents of this surface. The genomes of these microbes also revealed the presence of many secretory enzymes. In particular, proteases which are hydrolytic enzymes capable of protein cleavage and degradation are of special interest in the skin environment which is enriched in proteins and lipids. In this minireview, we will focus on the roles of these skin-relevant microbial secreted proteases, both in terms of their widely studied roles as pathogenic agents in tissue invasion and host immune inactivation, and their recently discovered roles in inter-microbial interactions and modulation of virulence factors. From these studies, it has become apparent that while microbial proteases are capable of a wide range of functions, their expression is tightly regulated and highly responsive to the environments the microbes are in. With the introduction of new biochemical and bioinformatics tools to study protease functions, it will be important to understand the roles played by skin microbial secretory proteases in cutaneous health, especially the less studied commensal microbes with an emphasis on contextual relevance.


1980 ◽  
Vol 60 (3) ◽  
pp. 497-509 ◽  
Author(s):  
G. C. TOPP ◽  
W. D. ZEBCHUK ◽  
J. DUMANSKI

The in situ saturated hydraulic conductivities of nine soil units were measured and cores of the same soil were taken to the laboratory for determination of desorption water capacity relationships. Hydraulic conductivities for the coarse- and fine-textured soils were equivalent and higher than that for medium-textured soils. However, the coarse- and fine-textured soils showed measurably different desorption curves for each of three soil units tested. Variability of duplicate measurements of hydraulic conductivity at sites were found to be considerably less than that of the soil unit as a whole. The highly variable in situ hydraulic conductivities resulted in separations of two groups of soil with significantly different values. A third intermediate group was not significantly different from the other two. The desorption curves were discussed in relation to differences in pore size distributions, identifying proportions of the pore space attributable to structural pores and to textural pores.


Hydrobiologia ◽  
2021 ◽  
Author(s):  
María A. Rodrigo ◽  
Eric Puche ◽  
Matilde Segura ◽  
Adriana Arnal ◽  
Carmen Rojo

AbstractWe contribute to the knowledge of charophyte meadows as key components of aquatic systems by analysing how they affect wetland sediments. We performed a factorial-design experiment with limnocorrals (outdoor mesocosms) in a Mediterranean protected wetland with presence or absence of charophytes [Chara vulgaris (CV) and Chara hispida (CH), planted from cultures or recruited in situ from germination of their fructifications]. The first 1 cm-surficial and 2 cm-bottom sediment layers were analysed for cladoceran ephippia, ostracods valves, benthic community of bacteria and periphytic biofilm, and charophyte fructifications. In the surficial sediment, the ephippia density was fourfold higher in the conditions with charophytes than in sites with no-charophytes and higher apparent viability was found. The surficial sediment periphyton biofilm was composed mainly of diatoms, with tenfold higher biomass underneath charophytes, and a much diverse community. The specific microhabitat generated by each charophyte species was reflected in the different abundances and relationships between the analysed components, firstly establishing a divergence with the sediment without meadows and, secondly, a distinction between the meadows of CH and CV that exhibit particular morphology-architecture, might exudate different metabolites and might have different allelopathic capacities over microalgae and microinvertebrates. Thus, the charophyte–sediment tandem is relevant for biodiversity and habitat conservation.


2019 ◽  
Author(s):  
Benedikt K Geier ◽  
Emilia Sogin ◽  
Dolma Michellod ◽  
Moritz Janda ◽  
Mario Kompauer ◽  
...  

Spatial metabolomics describes the location and chemistry of small molecules involved in metabolic phenotypes, defense molecules and chemical interactions in natural communities. Most current techniques are unable to spatially link the genotype and metabolic phenotype of microorganisms in situ at a scale relevant to microbial interactions. Here, we present a spatial metabolomics pipeline (metaFISH) that combines fluorescence in situ hybridization (FISH) microscopy and high-resolution atmospheric pressure mass spectrometry imaging (AP-MALDI-MSI) to image host-microbe symbioses and their metabolic interactions. metaFISH aligns and integrates metabolite and fluorescent images at the micrometer-scale for a spatial assignment of host and symbiont metabolites on the same tissue section. To illustrate the advantages of metaFISH, we mapped the spatial metabolome of a deep-sea mussel and its intracellular symbiotic bacteria at the scale of individual epithelial host cells. Our analytical pipeline revealed metabolic adaptations of the epithelial cells to the intracellular symbionts, a variation in metabolic phenotypes in one symbiont type, and novel symbiosis metabolites. metaFISH provides a culture-independent approach to link metabolic phenotypes to community members in situ - a powerful tool for microbiologists across fields.


mSystems ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Ryan M. Ziels ◽  
Masaru K. Nobu ◽  
Diana Z. Sousa

ABSTRACT Linking the genomic content of uncultivated microbes to their metabolic functions remains a critical challenge in microbial ecology. Resolving this challenge has implications for improving our management of key microbial interactions in biotechnologies such as anaerobic digestion, which relies on slow-growing syntrophic and methanogenic communities to produce renewable methane from organic waste. In this study, we combined DNA stable-isotope probing (SIP) with genome-centric metagenomics to recover the genomes of populations enriched in 13C after growing on [13C]butyrate. Differential abundance analysis of recovered genomic bins across the SIP metagenomes identified two metagenome-assembled genomes (MAGs) that were significantly enriched in heavy [13C]DNA. Phylogenomic analysis assigned one MAG to the genus Syntrophomonas and the other MAG to the genus Methanothrix. Metabolic reconstruction of the annotated genomes showed that the Syntrophomonas genome encoded all the enzymes for beta-oxidizing butyrate, as well as several mechanisms for interspecies electron transfer via electron transfer flavoproteins, hydrogenases, and formate dehydrogenases. The Syntrophomonas genome shared low average nucleotide identity (<95%) with any cultured representative species, indicating that it is a novel species that plays a significant role in syntrophic butyrate degradation within anaerobic digesters. The Methanothrix genome contained the complete pathway for acetoclastic methanogenesis, indicating that it was enriched in 13C from syntrophic acetate transfer. This study demonstrates the potential of stable-isotope-informed genome-resolved metagenomics to identify in situ interspecies metabolic cooperation within syntrophic consortia important to anaerobic waste treatment as well as global carbon cycling. IMPORTANCE Predicting the metabolic potential and ecophysiology of mixed microbial communities remains a major challenge, especially for slow-growing anaerobes that are difficult to isolate. Unraveling the in situ metabolic activities of uncultured species may enable a more descriptive framework to model substrate transformations by microbiomes, which has broad implications for advancing the fields of biotechnology, global biogeochemistry, and human health. Here, we investigated the in situ function of mixed microbiomes by combining stable-isotope probing with metagenomics to identify the genomes of active syntrophic populations converting butyrate, a C4 fatty acid, into methane within anaerobic digesters. This approach thus moves beyond the mere presence of metabolic genes to resolve “who is doing what” by obtaining confirmatory assimilation of the labeled substrate into the DNA signature. Our findings provide a framework to further link the genomic identities of uncultured microbes with their ecological function within microbiomes driving many important biotechnological and global processes.


2020 ◽  
Vol 175 ◽  
pp. 45-50
Author(s):  
Tristan Sarton du Jonchay ◽  
Hao Chen ◽  
Anna Wieger ◽  
Zoe Szajnfarber ◽  
Koki Ho

2011 ◽  
Vol 26 (12) ◽  
pp. 2159-2171 ◽  
Author(s):  
S. Gaboreau ◽  
D. Prêt ◽  
E. Tinseau ◽  
F. Claret ◽  
D. Pellegrini ◽  
...  
Keyword(s):  

2018 ◽  
Vol 184 ◽  
pp. 78-92 ◽  
Author(s):  
Dörthe Holthusen ◽  
André Anibal Brandt ◽  
José Miguel Reichert ◽  
Rainer Horn ◽  
Heiner Fleige ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document