scholarly journals Cytosine and adenine deaminase base-editors induce broad and nonspecific changes in gene expression and splicing

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jiao Fan ◽  
Yige Ding ◽  
Chao Ren ◽  
Ziguo Song ◽  
Jie Yuan ◽  
...  

AbstractCytosine or adenine base editors (CBEs or ABEs) hold great promise in therapeutic applications because they enable the precise conversion of targeted base changes without generating of double-strand breaks. However, both CBEs and ABEs induce substantial off-target DNA editing, and extensive off-target RNA single nucleotide variations in transfected cells. Therefore, the potential effects of deaminases induced by DNA base editors are of great importance for their clinical applicability. Here, the transcriptome-wide deaminase effects on gene expression and splicing is examined. Differentially expressed genes (DEGs) and differential alternative splicing (DAS) events, induced by base editors, are identified. Both CBEs and ABEs generated thousands of DEGs and hundreds of DAS events. For engineered CBEs or ABEs, base editor-induced variants had little effect on the elimination of DEGs and DAS events. Interestingly, more DEGs and DAS events are observed as a result of over expressions of cytosine and adenine deaminases. This study reveals a previously overlooked aspect of deaminase effects in transcriptome-wide gene expression and splicing, and underscores the need to fully characterize such effects of deaminase enzymes in base editor platforms.

Author(s):  
Martin Pal ◽  
Marco J. Herold

CRISPR base editing technology is a promising genome editing tool as (i) it does not require a DNA template to introduce mutations and (ii) it avoids creating DNA double-strand breaks, which can lead to unintended chromosomal alterations or elicit an unwanted DNA damage response. Given many cancers originate from point mutations in cancer-driving genes, the application of base editing for either modelling tumour development, therapeutic editing, or functional screening is of great promise. In this review, we summarise current DNA base editing technologies and will discuss recent advancements and existing hurdles for its usage in cancer research.


2019 ◽  
Author(s):  
Julian Grünewald ◽  
Ronghao Zhou ◽  
Sowmya Iyer ◽  
Caleb A. Lareau ◽  
Sara P. Garcia ◽  
...  

AbstractCRISPR-guided DNA base editors enable the efficient installation of targeted single-nucleotide changes. Cytosine or adenine base editors (CBEs or ABEs), which are fusions of cytidine or adenosine deaminases to CRISPR-Cas nickases, can efficiently induce DNA C-to-T or A-to-G alterations in DNA, respectively1-4. We recently demonstrated that both the widely used CBE BE3 (harboring a rat APOBEC1 cytidine deaminase) and the optimized ABEmax editor can induce tens of thousands of guide RNA-independent, transcriptome-wide RNA base edits in human cells with high efficiencies5. In addition, we showed the feasibility of creating SElective Curbing of Unwanted RNA Editing (SECURE)-BE3 variants that exhibit substantially reduced unwanted RNA editing activities while retaining robust and more precise on-target DNA editing5. Here we describe structure-guided engineering of SECURE-ABE variants that not only possess reduced off-target RNA editing with comparable on-target DNA activities but are also the smallest Streptococcus pyogenes Cas9 (SpCas9) base editors described to date. In addition, we tested CBEs composed of cytidine deaminases other than APOBEC1 and found that human APOBEC3A (hA3A) cytidine deaminase CBE induces substantial transcriptome-wide RNA base edits with high efficiencies. By contrast, a previously described “enhanced” A3A (eA3A) cytidine deaminase CBE or a human activation-induced cytidine deaminase (hAID) CBE induce substantially reduced or near background levels of RNA edits. In sum, our work describes broadly useful SECURE-ABE and -CBE base editors and reinforces the importance of minimizing RNA editing activities of DNA base editors for research and therapeutic applications.


2005 ◽  
Vol 187 (20) ◽  
pp. 7027-7037 ◽  
Author(s):  
Jennifer L. Robbins-Manke ◽  
Zoran Z. Zdraveski ◽  
Martin Marinus ◽  
John M. Essigmann

ABSTRACT DNA adenine methylation by DNA adenine methyltransferase (Dam) in Escherichia coli plays an important role in processes such as DNA replication initiation, gene expression regulation, and mismatch repair. In addition, E. coli strains deficient in Dam are hypersensitive to DNA-damaging agents. We used genome microarrays to compare the transcriptional profiles of E. coli strains deficient in Dam and mismatch repair (dam, dam mutS, and mutS mutants). Our results show that >200 genes are expressed at a higher level in the dam strain, while an additional mutation in mutS suppresses the induction of many of the same genes. We also show by microarray and semiquantitative real-time reverse transcription-PCR that both dam and dam mutS strains show derepression of LexA-regulated SOS genes as well as the up-regulation of other non-SOS genes involved in DNA repair. To correlate the level of SOS induction and the up-regulation of genes involved in recombinational repair with the level of DNA damage, we used neutral single-cell electrophoresis to determine the number of double-strand breaks per cell in each of the strains. We find that dam mutant E. coli strains have a significantly higher level of double-strand breaks than the other strains. We also observe a broad range in the number of double-strand breaks in dam mutant cells, with a minority of cells showing as many as 10 or more double-strand breaks. We propose that the up-regulation of recombinational repair in dam mutants allows for the efficient repair of double-strand breaks whose formation is dependent on functional mismatch repair.


2016 ◽  
Author(s):  
Olivier Poirion ◽  
Xun Zhu ◽  
Travers Ching ◽  
Lana X. Garmire

AbstractDespite its popularity, characterization of subpopulations with transcript abundance is subject to a significant amount of noise. We propose to use effective and expressed nucleotide variations (eeSNVs) from scRNA-seq as alternative features for tumor subpopulation identification. We developed a linear modeling framework, SSrGE, to link eeSNVs associated with gene expression. In all the datasets tested, eeSNVs achieve better accuracies than gene expression for identifying subpopulations. Previously validated cancer-relevant genes are also highly ranked, confirming the significance of the method. Moreover, SSrGE is capable of analyzing coupled DNA-seq and RNA-seq data from the same single cells, demonstrating its value in integrating multi-omics single cell techniques. In summary, SNV features from scRNA-seq data have merits for both subpopulation identification and linkage of genotype-phenotype relationship. The method SSrGE is available at https://github.com/lanagarmire/SSrGE.


2013 ◽  
Vol 53 (6) ◽  
pp. 458-470 ◽  
Author(s):  
Amit B. Shirode ◽  
Prasad Kovvuru ◽  
Sridar V. Chittur ◽  
Susanne M. Henning ◽  
David Heber ◽  
...  

2021 ◽  
Author(s):  
Luis Humberto Cisneros ◽  
Kimberly J Bussey ◽  
Charles Vasque

The clustering of mutations observed in cancer cells is reminiscent of the stress-induced mutagenesis (SIM) response in bacteria. SIM employs error-prone polymerases resulting in mutations concentrated around DNA double-strand breaks with an abundance that decays with genomic distance. We performed a quantitative study on single nucleotide variant calls for whole-genome sequencing data from 1950 tumors and non-inherited mutations from 129 normal samples. We introduce statistical methods to identify mutational clusters and quantify their distribution pattern. Our results show that mutations in both normal and cancer samples are indeed clustered and have shapes indicative of SIM. We found the genomic locations of groups of close mutations are more likely to be prevalent across normal samples than in cancer suggesting loss of regulation over the mutational process during carcinogenesis.


2007 ◽  
Vol 25 (26) ◽  
pp. 4043-4050 ◽  
Author(s):  
Donna S. Shewach ◽  
Theodore S. Lawrence

Radiosensitization with antimetabolites has improved clinical outcome for patients with solid malignancies, especially cancers of the GI tract, cervix, and head and neck. Fluorouracil (FU) and hydroxyurea have been widely used clinically during the last four decades, and promising results have been observed more recently with gemcitabine. Although the antimetabolites all target DNA replication, they differ with respect to the mechanisms by which they produce radiosensitization. The antimetabolite radiosensitizers may inhibit thymidylate synthase (TS) or ribonucleotide reductase, and the nucleoside/nucleobase analogs can be incorporated into DNA. Radiosensitization can result from chemotherapy-induced increase in DNA double-strand breaks or inhibition of their repair. Studies of repair pathways involved in radiosensitization with antimetabolites implicate base excision repair with the TS inhibitors, homologous recombination with gemcitabine, and mismatch repair with FU and gemcitabine. Gemcitabine can also stimulate epidermal growth factor receptor (EGFR) phosphorylation; inhibiting this effect with EGFR inhibitors can potentiate cytotoxicity and radiosensitization. Additional work is necessary to determine more precisely the processes by which antimetabolites act as radiation sensitizers and to define the optimal sequencing of these agents with EGFR inhibitors to provide better guidance for clinical protocols combining these drugs with radiotherapy.


Sign in / Sign up

Export Citation Format

Share Document