scholarly journals Relaxion stars and their detection via atomic physics

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Abhishek Banerjee ◽  
Dmitry Budker ◽  
Joshua Eby ◽  
Hyungjin Kim ◽  
Gilad Perez

AbstractThe cosmological relaxion can address the hierarchy problem, while its coherent oscillations can constitute dark matter in the present universe. We consider the possibility that the relaxion forms gravitationally bound objects that we denote as relaxion stars. The density of these stars would be higher than that of the local dark matter density, resulting in enhanced signals in table-top detectors, among others. Furthermore, we raise the possibility that these objects may be trapped by an external gravitational potential, such as that of the Earth or the Sun. This leads to formation of relaxion halos of even greater density. We discuss several interesting implications of relaxion halos, as well as detection strategies to probe them. Here, we show that current and near-future atomic physics experiments can probe physical models of relaxion dark matter in scenarios of bound relaxion halos around the Earth or Sun.

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Abhishek Banerjee ◽  
Dmitry Budker ◽  
Joshua Eby ◽  
Victor V. Flambaum ◽  
Hyungjin Kim ◽  
...  

Abstract We discuss the sensitivity of the present and near-future axion dark matter experiments to a halo of axions or axion-like particles gravitationally bound to the Earth or the Sun. Such halos, assuming they are formed, can be searched for in a wide variety of experiments even when the axion couplings to matter are small, while satisfying all the present experimental bounds on the local properties of dark matter. The structure and coherence properties of these halos also imply novel signals, which can depend on the latitude or orientation of the detector. We demonstrate this by analyzing the sensitivity of several distinct types of axion dark matter experiments.


2013 ◽  
Vol 28 (27) ◽  
pp. 1330022
Author(s):  
ORVIN E. WAGNER

Until recently I had been assuming from the data taken that the dark matter wave velocity on earth is close to 25 m/s. The density of dark matter is apparently proportional to the reciprocal of the wave velocity squared. I found velocities for 2011 using my interchange method described in my 2010 Physics Essays' article. The data therein was taken near the first of May 2009. Beginning in September 2011, the large amplitude wave velocity was found near 1000 m/s, and increased to more than 20,000 m/s in October in the Northern hemisphere. Apparently one has to take into account the location and tilt of the earth in the dark matter standing wave pattern produced by the sun. I assume that the earth lies at least partially on an antinode for part of the year rather than on a node compared to most of the other planets. The antinode location and dark matter density varies on the earth's surface because the earth's orbit location and tilt varies as a function of the time of year with the tilt determining spring, summer, and winter in the Southern and Northern hemispheres.


2021 ◽  
Vol 17 (12) ◽  
pp. 1396-1401
Author(s):  
Samer Afach ◽  
Ben C. Buchler ◽  
Dmitry Budker ◽  
Conner Dailey ◽  
Andrei Derevianko ◽  
...  

AbstractUltralight bosons such as axion-like particles are viable candidates for dark matter. They can form stable, macroscopic field configurations in the form of topological defects that could concentrate the dark matter density into many distinct, compact spatial regions that are small compared with the Galaxy but much larger than the Earth. Here we report the results of the search for transient signals from the domain walls of axion-like particles by using the global network of optical magnetometers for exotic (GNOME) physics searches. We search the data, consisting of correlated measurements from optical atomic magnetometers located in laboratories all over the world, for patterns of signals propagating through the network consistent with domain walls. The analysis of these data from a continuous month-long operation of GNOME finds no statistically significant signals, thus placing experimental constraints on such dark matter scenarios.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Roberto A. Lineros ◽  
Mathias Pierre

Abstract We explore the connection between Dark Matter and neutrinos in a model inspired by radiative Type-II seessaw and scotogenic scenarios. In our model, we introduce new electroweakly charged states (scalars and a vector-like fermion) and impose a discrete ℤ2 symmetry. Neutrino masses are generated at the loop level and the lightest ℤ2-odd neutral particle is stable and it can play the role of a Dark Matter candidate. We perform a numerical analysis of the model showing that neutrino masses and flavour structure can be reproduced in addition to the correct dark matter density, with viable DM masses from 700 GeV to 30 TeV. We explore direct and indirect detection signatures and show interesting detection prospects by CTA, Darwin and KM3Net and highlight the complementarity between these observables.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
David Curtin ◽  
Jack Setford

Abstract Dark matter could have a dissipative asymmetric subcomponent in the form of atomic dark matter (aDM). This arises in many scenarios of dark complexity, and is a prediction of neutral naturalness, such as the Mirror Twin Higgs model. We show for the first time how White Dwarf cooling provides strong bounds on aDM. In the presence of a small kinetic mixing between the dark and SM photon, stars are expected to accumulate atomic dark matter in their cores, which then radiates away energy in the form of dark photons. In the case of white dwarfs, this energy loss can have a detectable impact on their cooling rate. We use measurements of the white dwarf luminosity function to tightly constrain the kinetic mixing parameter between the dark and visible photons, for DM masses in the range 10−5–105 GeV, down to values of ϵ ∼ 10−12. Using this method we can constrain scenarios in which aDM constitutes fractions as small as 10−3 of the total dark matter density. Our methods are highly complementary to other methods of probing aDM, especially in scenarios where the aDM is arranged in a dark disk, which can make direct detection extremely difficult but actually slightly enhances our cooling constraints.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Kazuo Shiokawa ◽  
Katya Georgieva

AbstractThe Sun is a variable active-dynamo star, emitting radiation in all wavelengths and solar-wind plasma to the interplanetary space. The Earth is immersed in this radiation and solar wind, showing various responses in geospace and atmosphere. This Sun–Earth connection variates in time scales from milli-seconds to millennia and beyond. The solar activity, which has a ~11-year periodicity, is gradually declining in recent three solar cycles, suggesting a possibility of a grand minimum in near future. VarSITI—variability of the Sun and its terrestrial impact—was the 5-year program of the scientific committee on solar-terrestrial physics (SCOSTEP) in 2014–2018, focusing on this variability of the Sun and its consequences on the Earth. This paper reviews some background of SCOSTEP and its past programs, achievements of the 5-year VarSITI program, and remaining outstanding questions after VarSITI.


2016 ◽  
Vol 458 (4) ◽  
pp. 3839-3850 ◽  
Author(s):  
Qiran Xia ◽  
Chao Liu ◽  
Shude Mao ◽  
Yingyi Song ◽  
Lan Zhang ◽  
...  

2010 ◽  
Vol 514 ◽  
pp. A47 ◽  
Author(s):  
S. Pasetto ◽  
E. K. Grebel ◽  
P. Berczik ◽  
R. Spurzem ◽  
W. Dehnen

2014 ◽  
Vol 10 (S306) ◽  
pp. 258-261
Author(s):  
Metin Ata ◽  
Francisco-Shu Kitaura ◽  
Volker Müller

AbstractWe study the statistical inference of the cosmological dark matter density field from non-Gaussian, non-linear and non-Poisson biased distributed tracers. We have implemented a Bayesian posterior sampling computer-code solving this problem and tested it with mock data based onN-body simulations.


2004 ◽  
Vol 13 (10) ◽  
pp. 2355-2359 ◽  
Author(s):  
JONATHAN L. FENG ◽  
ARVIND RAJARAMAN ◽  
FUMIHIRO TAKAYAMA

The gravitational interactions of elementary particles are suppressed by the Planck scale M*~1018 GeV and are typically expected to be far too weak to be probed by experiments. We show that, contrary to conventional wisdom, such interactions may be studied by particle physics experiments in the next few years. As an example, we consider conventional supergravity with a stable gravitino as the lightest supersymmetric particle. The next-lightest supersymmetric particle (NLSP) decays to the gravitino through gravitational interactions after about a year. This lifetime can be measured by stopping NLSPs at colliders and observing their decays. Such studies will yield a measurement of Newton's gravitational constant on unprecedentedly small scales, shed light on dark matter, and provide a window on the early universe.


Sign in / Sign up

Export Citation Format

Share Document