scholarly journals Modulation of Igβ is essential for the B cell selection in germinal center

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Kagefumi Todo ◽  
Orie Koga ◽  
Miwako Nishikawa ◽  
Masaki Hikida

Abstract The positive and negative selection of antigen-reactive B cells take place in the germinal center (GC) during an immune responses. However, the precise molecular mechanisms underlying these selection machineries, including the involvement of antigen receptor signaling molecules, remain to be elucidated. We found that expression levels of Igα and Igβ, which are the essential components of B cell antigen-receptor complex, were differentially regulated in GC B cells and that the expression of Igβ was more prominently down-regulated in a portion of GC B cells. The suppression of Igβ down-regulation reduced the number of GL7+GC B cells and the affinity maturation in T-dependent responses was markedly impaired. In addition, the disease phenotypes in autoimmune-prone mice were ameliorated by blocking of Igβ down-regulation. These results suggest that Igβ down-regulation is involved in the normal positive selection in GC and the accumulation of autoreactive B cells in autoimmune-prone mice.

2019 ◽  
Vol 116 (37) ◽  
pp. 18550-18560 ◽  
Author(s):  
Wenqian Zhang ◽  
Huihui Zhang ◽  
Shujun Liu ◽  
Fucan Xia ◽  
Zijian Kang ◽  
...  

Excessive self-reactive and inadequate affinity-matured antigen-specific antibody responses have been reported to coexist in lupus, with elusive cellular and molecular mechanisms. Here, we report that the antigen-specific germinal center (GC) response―a process critical for antibody affinity maturation―is compromised in murine lupus models. Importantly, this defect can be triggered by excessive autoimmunity-relevant CD11c+Tbet+age-associated B cells (ABCs). In B cell-intrinsic Ship-deficient (ShipΔB) lupus mice, excessive CD11c+Tbet+ABCs induce deregulated follicular T-helper (TFH) cell differentiation through their potent antigen-presenting function and consequently compromise affinity-based GC selection. Excessive CD11c+Tbet+ABCs and deregulated TFHcell are also present in other lupus models and patients. Further, over-activated Toll-like receptor signaling in Ship-deficient B cells is critical for CD11c+Tbet+ABC differentiation, and blocking CD11c+Tbet+ABC differentiation in ShipΔB mice by ablating MyD88 normalizes TFHcell differentiation and rescues antigen-specific GC responses, as well as prevents autoantibody production. Our study suggests that excessive CD11c+Tbet+ABCs not only contribute significantly to autoantibody production but also compromise antigen-specific GC B-cell responses and antibody-affinity maturation, providing a cellular link between the coexisting autoantibodies and inadequate affinity-matured antigen-specific antibodies in lupus models and a potential target for treating lupus.


2005 ◽  
Vol 25 (19) ◽  
pp. 8531-8540 ◽  
Author(s):  
Jens Kroll ◽  
Xiaozhong Shi ◽  
Arianna Caprioli ◽  
Hong-Hsing Liu ◽  
Claudia Waskow ◽  
...  

ABSTRACT BTB-kelch proteins can elicit diverse biological functions but very little is known about the physiological role of these proteins in vivo. Kelch-like protein 6 (KLHL6) is a BTB-kelch protein with a lymphoid tissue-restricted expression pattern. In the B-lymphocyte lineage, KLHL6 is expressed throughout ontogeny, and KLHL6 expression is strongly upregulated in germinal center (GC) B cells. To analyze the role of KLHL6 in vivo, we have generated mouse mutants of KLHL6. Development of pro- and pre-B cells was normal but numbers of subsequent stages, transitional 1 and 2, and mature B cells were reduced in KLHL6-deficient mice. The antigen-dependent GC reaction was blunted (smaller GCs, reduced B-cell expansion, and reduced memory antibody response) in the absence of KLHL6. Comparison of mutants with global loss of KLHL6 to mutants lacking KLHL6 specifically in B cells demonstrated a B-cell-intrinsic requirement for KLHL6 expression. Finally, B-cell antigen receptor (BCR) cross-linking was less sensitive in KLHL6-deficient B cells compared to wild-type B cells as measured by proliferation, Ca2+ response, and activation of phospholipase Cγ2. Our results strongly point to a role for KLHL6 in BCR signal transduction and formation of the full germinal center response.


2019 ◽  
Vol 116 (19) ◽  
pp. 9511-9520 ◽  
Author(s):  
Hongsheng Wang ◽  
Shweta Jain ◽  
Peng Li ◽  
Jian-Xin Lin ◽  
Jangsuk Oh ◽  
...  

The IRF and Ets families of transcription factors regulate the expression of a range of genes involved in immune cell development and function. However, the understanding of the molecular mechanisms of each family member has been limited due to their redundancy and broad effects on multiple lineages of cells. Here, we report that double deletion of floxed Irf8 and Spi1 (encoding PU.1) by Mb1-Cre (designated DKO mice) in the B cell lineage resulted in severe defects in the development of follicular and germinal center (GC) B cells. Class-switch recombination and antibody affinity maturation were also compromised in DKO mice. RNA-seq (sequencing) and ChIP-seq analyses revealed distinct IRF8 and PU.1 target genes in follicular and activated B cells. DKO B cells had diminished expression of target genes vital for maintaining follicular B cell identity and GC development. Moreover, our findings reveal that expression of B-cell lymphoma protein 6 (BCL6), which is critical for development of germinal center B cells, is dependent on IRF8 and PU.1 in vivo, providing a mechanism for the critical role for IRF8 and PU.1 in the development of GC B cells.


Blood ◽  
2011 ◽  
Vol 117 (22) ◽  
pp. 5907-5917 ◽  
Author(s):  
Katerina Vrzalikova ◽  
Martina Vockerodt ◽  
Sarah Leonard ◽  
Andrew Bell ◽  
Wenbin Wei ◽  
...  

AbstractAn important pathogenic event in Epstein-Barr virus (EBV)-associated lymphomas is the suppression of virus replication, which would otherwise lead to cell death. Because virus replication in B cells is intimately linked to their differentiation toward plasma cells, we asked whether the physiologic signals that drive normal B-cell differentiation are absent in EBV-transformed cells. We focused on BLIMP1α, a transcription factor that is required for plasma cell differentiation and that is inactivated in diffuse large B-cell lymphomas. We show that BLIMP1α expression is down-regulated after EBV infection of primary germinal center B cells and that the EBV oncogene, latent membrane protein-1 (LMP-1), is alone capable of inducing this down-regulation in these cells. Furthermore, the down-regulation of BLIMP1α by LMP-1 was accompanied by a partial disruption of the BLIMP1α transcriptional program, including the aberrant induction of MYC, the repression of which is required for terminal differentiation. Finally, we show that the ectopic expression of BLIMP1α in EBV-transformed cells can induce the viral lytic cycle. Our results suggest that LMP-1 expression in progenitor germinal center B cells could contribute to the pathogenesis of EBV-associated lymphomas by down-regulating BLIMP1α, in turn preventing plasma cell differentiation and induction of the viral lytic cycle.


2020 ◽  
Vol 217 (9) ◽  
Author(s):  
Xin Li ◽  
Liying Gong ◽  
Alexandre P. Meli ◽  
Danielle Karo-Atar ◽  
Weili Sun ◽  
...  

Antigen uptake and presentation by naive and germinal center (GC) B cells are different, with the former expressing even low-affinity BCRs efficiently capture and present sufficient antigen to T cells, whereas the latter do so more efficiently after acquiring high-affinity BCRs. We show here that antigen uptake and processing by naive but not GC B cells depend on Cbl and Cbl-b (Cbls), which consequently control naive B and cognate T follicular helper (Tfh) cell interaction and initiation of the GC reaction. Cbls mediate CD79A and CD79B ubiquitination, which is required for BCR-mediated antigen endocytosis and postendocytic sorting to lysosomes, respectively. Blockade of CD79A or CD79B ubiquitination or Cbls ligase activity is sufficient to impede BCR-mediated antigen processing and GC development. Thus, Cbls act at the entry checkpoint of the GC reaction by promoting naive B cell antigen presentation. This regulation may facilitate recruitment of naive B cells with a low-affinity BCR into GCs to initiate the process of affinity maturation.


2000 ◽  
Vol 191 (8) ◽  
pp. 1443-1448 ◽  
Author(s):  
Bennett C. Weintraub ◽  
Jesse Eunsuk Jun ◽  
Anthony C. Bishop ◽  
Kevan M. Shokat ◽  
Matthew L. Thomas ◽  
...  

Signal transduction through the B cell antigen receptor (BCR) is altered in B cells that express a receptor that recognizes self-antigen. To understand the molecular basis for the change in signaling in autoreactive B cells, a transgenic model was used to isolate a homogeneous population of tolerant B lymphocytes. These cells were compared with a similar population of naive B lymphocytes. We show that the BCR from naive B cells enters a detergent-insoluble domain of the cell within 6 s after antigen binding, before a detectable increase in BCR phosphorylation. This fraction appears to be important for signaling because it is enriched for lyn kinase but lacks CD45 tyrosine phosphatase and because the BCR that moves into this domain becomes more highly phosphorylated. Partitioning of the BCR into this fraction is unaffected by src family kinase inhibition. Tolerant B cells do not efficiently partition the BCR into the detergent-insoluble domain, providing an explanation for their reduced tyrosine kinase activation and calcium flux in response to antigen. These results identify an early, regulated step in antigen receptor signaling and self-tolerance.


Author(s):  
Yanan Li ◽  
Anshuman Bhanja ◽  
Arpita Upadhyaya ◽  
Xiaodong Zhao ◽  
Wenxia Song

B-cells undergo somatic hypermutation and affinity maturation in germinal centers. Somatic hypermutated germinal center B-cells (GCBs) compete to engage with and capture antigens on follicular dendritic cells. Recent studies show that when encountering membrane antigens, GCBs generate actin-rich pod-like structures with B-cell receptor (BCR) microclusters to facilitate affinity discrimination. While deficiencies in actin regulators, including the Wiskott-Aldrich syndrome protein (WASp), cause B-cell affinity maturation defects, the mechanism by which actin regulates BCR signaling in GBCs is not fully understood. Using WASp knockout (WKO) mice that express Lifeact-GFP and live-cell total internal reflection fluorescence imaging, this study examined the role of WASp-mediated branched actin polymerization in the GCB immunological synapse. After rapid spreading on antigen-coated planar lipid bilayers, GCBs formed microclusters of phosphorylated BCRs and proximal signaling molecules at the center and the outer edge of the contact zone. The centralized signaling clusters localized at actin-rich GCB membrane protrusions. WKO reduced the centralized micro-signaling clusters by decreasing the number and stability of F-actin foci supporting GCB membrane protrusions. The actin structures that support the spreading membrane also appeared less frequently and regularly in WKO than in WT GCBs, which led to reductions in both the level and rate of GCB spreading and antigen gathering. Our results reveal essential roles for WASp in the generation and maintenance of unique structures for GCB immunological synapses.


2020 ◽  
Author(s):  
Juhee Pae ◽  
Jonatan Ersching ◽  
Tiago B. R. Castro ◽  
Marta Schips ◽  
Luka Mesin ◽  
...  

AbstractDuring affinity maturation, germinal center (GC) B cells alternate between proliferation and so-matic hypermutation in the dark zone (DZ) and affinity-dependent selection in the light zone (LZ). This anatomical segregation imposes that the vigorous proliferation that allows clonal expansion of positively-selected GC B cells takes place ostensibly in the absence of the signals that triggered selection in the LZ, as if by “inertia.” We find that such inertial cycles specifically require the cell cycle regulator cyclin D3. Cyclin D3 dose-dependently controls the extent to which B cells proliferate in the DZ and is essential for effective clonal expansion of GC B cells in response to strong T follicular helper (Tfh) cell help. Introduction into the Ccnd3 gene of a Burkitt lymphoma-associated gain-of-function mutation (T283A) leads to larger GCs with increased DZ proliferation and, in older mice, to clonal B cell lymphoproliferation, suggesting that the DZ inertial cell cycle program can be coopted by B cells undergoing malignant transformation.


Sign in / Sign up

Export Citation Format

Share Document