scholarly journals Cellular graphene aerogel combines ultralow weight and high mechanical strength: A highly efficient reactor for catalytic hydrogenation

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Bingxing Zhang ◽  
Jianling Zhang ◽  
Xinxin Sang ◽  
Chengcheng Liu ◽  
Tian Luo ◽  
...  
2016 ◽  
Vol 18 (40) ◽  
pp. 28297-28306 ◽  
Author(s):  
Hui Zhang ◽  
Yuqi Li ◽  
Yaoguang Xu ◽  
Zexiang Lu ◽  
Lihui Chen ◽  
...  

To deal with marine oil spillage and chemical leakage issues, a highly efficient absorbent (cellulose based aerogel) with a low density (ρ < 0.034 g cm−3, φ > 98.5%) and high mechanical strength was fabricated via a novel physical–chemical foaming method, plasma treatment and subsequent silane modification process.


Alloy Digest ◽  
2009 ◽  
Vol 58 (8) ◽  

Abstract DMV 59 is the material of choice for a wide variety of applications where significant corrosion resistance and high mechanical strength is necessary. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, and joining. Filing Code: Ni-672. Producer or source: Mannesmann DMV Stainless USA Inc.


Alloy Digest ◽  
1965 ◽  
Vol 14 (5) ◽  

Abstract BOFORS 2RM2 is a hardenable stainless cast steel having good weldability, high mechanical strength and improved corrosion resistance. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on low temperature performance and corrosion resistance as well as casting, forming, heat treating, machining, and joining. Filing Code: SS-169. Producer or source: Aktiebolaget Bofors.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3574
Author(s):  
Pejman Heidarian ◽  
Hossein Yousefi ◽  
Akif Kaynak ◽  
Mariana Paulino ◽  
Saleh Gharaie ◽  
...  

Electroconductive hydrogels with stimuli-free self-healing and self-recovery (SELF) properties and high mechanical strength for wearable strain sensors is an area of intensive research activity at the moment. Most electroconductive hydrogels, however, consist of static bonds for mechanical strength and dynamic bonds for SELF performance, presenting a challenge to improve both properties into one single hydrogel. An alternative strategy to successfully incorporate both properties into one system is via the use of stiff or rigid, yet dynamic nano-materials. In this work, a nano-hybrid modifier derived from nano-chitin coated with ferric ions and tannic acid (TA/Fe@ChNFs) is blended into a starch/polyvinyl alcohol/polyacrylic acid (St/PVA/PAA) hydrogel. It is hypothesized that the TA/Fe@ChNFs nanohybrid imparts both mechanical strength and stimuli-free SELF properties to the hydrogel via dynamic catecholato-metal coordination bonds. Additionally, the catechol groups of TA provide mussel-inspired adhesion properties to the hydrogel. Due to its electroconductivity, toughness, stimuli-free SELF properties, and self-adhesiveness, a prototype soft wearable strain sensor is created using this hydrogel and subsequently tested.


Nanoscale ◽  
2021 ◽  
Author(s):  
Wei Bing ◽  
Faming Wang ◽  
Yuhuan Sun ◽  
Jinsong Ren ◽  
Xiaogang Qu

An environmentally friendly biomimetic strategy has been presented and validated for the catalytic hydrogenation reaction in live bacteria. In situ formed ultra-fine metal nanoparticles can realize highly efficient asymmetric hydrogenation reactions.


2021 ◽  
Vol 36 (1) ◽  
pp. 189-197
Author(s):  
Sen Wang ◽  
Xiao Wang ◽  
Xiao-yu Shi ◽  
Cai-xia Meng ◽  
Cheng-lin Sun ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
pp. eabc5442
Author(s):  
Dianyu Dong ◽  
Caroline Tsao ◽  
Hsiang-Chieh Hung ◽  
Fanglian Yao ◽  
Chenjue Tang ◽  
...  

The high mechanical strength and long-term resistance to the fibrous capsule formation are two major challenges for implantable materials. Unfortunately, these two distinct properties do not come together and instead compromise each other. Here, we report a unique class of materials by integrating two weak zwitterionic hydrogels into an elastomer-like high-strength pure zwitterionic hydrogel via a “swelling” and “locking” mechanism. These zwitterionic-elastomeric-networked (ZEN) hydrogels are further shown to efficaciously resist the fibrous capsule formation upon implantation in mice for up to 1 year. Such materials with both high mechanical properties and long-term fibrous capsule resistance have never been achieved before. This work not only demonstrates a class of durable and fibrous capsule–resistant materials but also provides design principles for zwitterionic elastomeric hydrogels.


Nanoscale ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 3079-3091
Author(s):  
Libo Chang ◽  
Zhiyuan Peng ◽  
Tong Zhang ◽  
Chuying Yu ◽  
Wenbin Zhong

Wood-inspired HCNF@Lig introduced into MXenes constructing a nacre-like material with high mechanical strength and excellent flexibility used as a flexible supercapacitor.


Soft Matter ◽  
2020 ◽  
Vol 16 (14) ◽  
pp. 3416-3424
Author(s):  
Xiongzhi Zhang ◽  
Yuanxun Liu ◽  
Junwei Wen ◽  
Zhiyong Zhao ◽  
Hongxiang Chen ◽  
...  

The introduction of structured microsphere composites into hydrogels is found to improve their mechanical strength capability.


Sign in / Sign up

Export Citation Format

Share Document