scholarly journals Tanshinones and diethyl blechnics with anti-inflammatory and anti-cancer activities from Salvia miltiorrhiza Bunge (Danshen)

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Hongwei Gao ◽  
Wen Sun ◽  
Jianping Zhao ◽  
Xiaxia Wu ◽  
Jin-Jian Lu ◽  
...  
2017 ◽  
Vol 41 (1) ◽  
pp. 64-70 ◽  
Author(s):  
Hyun Gyu Choi ◽  
Phuong Thao Tran ◽  
Jeong-Hyung Lee ◽  
Byung Sun Min ◽  
Jeong Ah Kim

Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1234
Author(s):  
Jing-Hui Feng ◽  
Hyun-Yong Kim ◽  
Su-Min Sim ◽  
Guang-Lei Zuo ◽  
Jeon-Sub Jung ◽  
...  

Arthritis is a common condition that causes pain and inflammation in a joint. Previously, we reported that the mixture extract (ME) from Agrimonia pilosa Ledeb. (AP) and Salvia miltiorrhiza Bunge (SM) could ameliorate gout arthritis. In the present study, we aimed to investigate the potential anti-inflammatory and antinociceptive effects of ME and characterize the mechanism. We compared the anti-inflammatory and antinociceptive effects of a positive control, Perna canaliculus powder (PC). The results showed that one-off and one-week treatment of ME reduced the pain threshold in a dose-dependent manner (from 10 to 100 mg/kg) in the mono-iodoacetate (MIA)-induced osteoarthritis (OA) model. ME also reduced the plasma TNF-α, IL-6, and CRP levels. In LPS-stimulated RAW 264.7 cells, ME inhibited the release of NO, PGE2, LTB4, and IL-6, increased the phosphorylation of PPAR-γ protein, and downregulated TNF-α and MAPKs proteins expression in a concentration-dependent (from 1 to 100 µg/mL) manner. Furthermore, ME ameliorated the progression of ear edema in mice. In most of the experiments, ME-induced effects were almost equal to, or were higher than, PC-induced effects. Conclusions: The data presented here suggest that ME shows anti-inflammatory and antinociceptive activities, indicating ME may be a potential therapeutic for arthritis treatment.


2020 ◽  
Vol 28 (2) ◽  
pp. 360-376 ◽  
Author(s):  
Atefeh Amiri ◽  
Maryam Mahjoubin-Tehran ◽  
Zatollah Asemi ◽  
Alimohammad Shafiee ◽  
Sarah Hajighadimi ◽  
...  

: Cancer and inflammatory disorders are two important public health issues worldwide with significant socio.economic impacts. Despite several efforts, the current therapeutic platforms are associated with severe limitations. Therefore, developing new therapeutic strategies for the treatment of these diseases is a top priority. Besides current therapies, the utilization of natural compounds has emerged as a new horizon for the treatment of cancer and inflammatory disorders as well. Such natural compounds could be used either alone or in combination with the standard cancer therapeutic modalities such as chemotherapy, radiotherapy, and immunotherapy. Resveratrol is a polyphenolic compound that is found in grapes as well as other foods. It has been found that this medicinal agent displays a wide pharmacological spectrum, including anti-cancer, anti-inflammatory, anti-microbial, and antioxidant activities. Recently, clinical and pre-clinical studies have highlighted the anti-cancer and anti-inflammatory effects of resveratrol. Increasing evidence revealed that resveratrol exerts its therapeutic effects by targeting various cellular and molecular mechanisms. Among cellular and molecular targets that are modulated by resveratrol, microRNAs (miRNAs) have appeared as key targets. MiRNAs are short non-coding RNAs that act as epigenetic regulators. These molecules are involved in many processes that are involved in the initiation and progression of cancer and inflammatory disorders. Herein, we summarized various miRNAs that are directly/indirectly influenced by resveratrol in cancer and inflammatory disorders.


2020 ◽  
Vol 20 (28) ◽  
pp. 2520-2534
Author(s):  
He Huang ◽  
Chuanjun Song ◽  
Junbiao Chang

: Tanshinones are a class of bioactive compounds present in the Chinese herbal medicine Danshen (Salvia miltiorrhiza Bunge), containing among others, abietane diterpene quinone scaffolds. Chemical synthesis and biological activity studies of natural and unnatural tanshinone derivatives have been reviewed in this article.


2020 ◽  
Vol 17 (9) ◽  
pp. 1102-1116
Author(s):  
Sudip Kumar Mandal ◽  
Utsab Debnath ◽  
Amresh Kumar ◽  
Sabu Thomas ◽  
Subhash Chandra Mandal ◽  
...  

Background and Introduction: Sesquiterpene lactones are a class of secondary metabolite that contains sesquiterpenoids and lactone ring as pharmacophore moiety. A large group of bioactive secondary metabolites such as phytopharmaceuticals belong to this category. From the Asteraceae family-based medicinal plants, more than 5,000 sesquiterpene lactones have been reported so far. Sesquiterpene lactone-based pharmacophore moieties hold promise for broad-spectrum biological activities against cancer, inflammation, parasitic, bacterial, fungal, viral infection and other functional disorders. Moreover, these moiety based phytocompounds have been highlighted with a new dimension in the natural drug discovery program worldwide after the 2015 Medicine Nobel Prize achieved by the Artemisinin researchers. Objective: These bitter substances often contain an α, β-unsaturated-γ-lactone as a major structural backbone, which in recent studies has been explored to be associated with anti-tumor, cytotoxic, and anti-inflammatory action. Recently, the use of sesquiterpene lactones as phytomedicine has been increased. This study will review the prospect of sesquiterpene lactones against inflammation and cancer. Methods: Hence, we emphasized on the different features of this moiety by incorporating its structural diversity on biological activities to explore structure-activity relationships (SAR) against inflammation and cancer. Results: How the dual mode of action such as anti-inflammatory and anti-cancer has been exhibitedby these phytopharmaceuticals will be forecasted in this study. Furthermore, the correlation of anti-inflammatory and anti-cancer activity executed by the sesquiterpene lactones for fruitful phytotherapy will also be revealed in the present review in the milieu of pharmacophore activity relation and pharmacodynamics study as well. Conclusion: So, these metabolites are paramount in phytopharmacological aspects. The present discussion on the future prospect of this moiety based on the reported literature could be a guide for anti-inflammatory and anti-cancer drug discovery programs for the upcoming researchers.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Yeni Lim ◽  
Oran Kwon

Abstract Objectives Increasing attention has been paid to a range of botanical food supplement that help to maintain vascular health. Multiple components in botanical foods are expected to be working in concert with various targets. In a previous our animal study, Phellinus baumii and Salvia miltiorrhiza Bunge (PS) ameliorated endothelial and vascular dysfunction in a platelet activation rat model. This study aimed to provide the components, target molecules, phenotypes, signaling pathways, and investigate the mechanism of PS on vascular health. Methods Network biology analysis was based on the data from two clinical trials. The first clinical trial was performed in healthy subjects using high-fat-induced vascular dysfunction model. The second clinical trial was performed in healthy smokers. Differential markers obtained from clinical data, Affymetrix microarray, metabolomics, together with ingredient of PS, were mapped onto the network platform termed the context-oriented directed associations. A network of “component-target-phenotype-pathway” was constructed. Results The resulting vascular health network demonstrates that the components of PS are linked various target molecules for adhesion molecule production, platelet activation, endothelial inflammation, vascular dilation, and mitochondrial metabolism and detoxification, implicated with various metabolic pathways. Conclusions Using network biology methods, this study revealed the components and their target molecules, phenotypes, signaling pathways and provided wider information to support the synergistic mechanisms of PS on vascular health. Funding Sources This research was funded by the Bio & Medical Technology Development Program of the National Research Foundation funded by the Ministry of Science & ICT and the BK21PLUS of the National Research Foundation.


Sign in / Sign up

Export Citation Format

Share Document