scholarly journals Soybean-derived Bowman-Birk Inhibitor (BBI) Inhibits HIV Replication in Macrophages

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Tong-Cui Ma ◽  
Run-Hong Zhou ◽  
Xu Wang ◽  
Jie-Liang Li ◽  
Ming Sang ◽  
...  

Abstract The Bowman-Birk inhibitor (BBI), a soybean-derived protease inhibitor, is known to have anti-inflammatory effect in both in vitro and in vivo systems. Macrophages play a key role in inflammation and immune activation, which is implicated in HIV disease progression. Here, we investigated the effect of BBI on HIV infection of peripheral blood monocyte-derived macrophages. We demonstrated that BBI could potently inhibit HIV replication in macrophages without cytotoxicity. Investigation of the mechanism(s) of BBI action on HIV showed that BBI induced the expression of IFN-β and multiple IFN stimulated genes (ISGs), including Myxovirus resistance protein 2 (Mx2), 2′,5′-oligoadenylate synthetase (OAS-1), Virus inhibitory protein (viperin), ISG15 and ISG56. BBI treatment of macrophages also increased the expression of several known HIV restriction factors, including APOBEC3F, APOBEC3G and tetherin. Furthermore, BBI enhanced the phosphorylation of IRF3, a key regulator of IFN-β. The inhibition of IFN-β pathway by the neutralization antibody to type I IFN receptor (Anti-IFNAR) abolished BBI-mediated induction of the anti-HIV factors and inhibition of HIV in macrophages. These findings that BBI could activate IFN-β-mediated signaling pathway, initialize the intracellular innate immunity in macrophages and potently inhibit HIV at multiple steps of viral replication cycle indicate the necessity to further investigate BBI as an alternative and cost-effective anti-HIV natural product.

2010 ◽  
Vol 84 (16) ◽  
pp. 8262-8274 ◽  
Author(s):  
Cheri A. Koetzner ◽  
Lili Kuo ◽  
Scott J. Goebel ◽  
Amy B. Dean ◽  
Monica M. Parker ◽  
...  

ABSTRACT The type I interferon (IFN) response plays an essential role in the control of in vivo infection by the coronavirus mouse hepatitis virus (MHV). However, in vitro, most strains of MHV are largely resistant to the action of this cytokine, suggesting that MHV encodes one or more functions that antagonize or evade the IFN system. A particular strain of MHV, MHV-S, exhibited orders-of-magnitude higher sensitivity to IFN than prototype strain MHV-A59. Through construction of interstrain chimeric recombinants, the basis for the enhanced IFN sensitivity of MHV-S was found to map entirely to the region downstream of the spike gene, at the 3′ end of the genome. Sequence analysis revealed that the major difference between the two strains in this region is the absence of gene 5a from MHV-S. Creation of a gene 5a knockout mutant of MHV-A59 demonstrated that a major component of IFN resistance maps to gene 5a. Conversely, insertion of gene 5a, or its homologs from related group 2 coronaviruses, at an upstream genomic position in an MHV-A59/S chimera restored IFN resistance. This is the first demonstration of a coronavirus gene product that can protect that same virus from the antiviral state induced by IFN. Neither protein kinase R, which phosphorylates eukaryotic initiation factor 2, nor oligoadenylate synthetase, which activates RNase L, was differentially activated in IFN-treated cells infected with MHV-A59 or MHV-S. Thus, the major IFN-induced antiviral activities that are specifically inhibited by MHV, and possibly by other coronaviruses, remain to be identified.


1996 ◽  
Vol 7 (5) ◽  
pp. 230-236 ◽  
Author(s):  
M. Fujiwara ◽  
K. Ijichi ◽  
K. Tokuhisa ◽  
K. Katsuura ◽  
G.-Y.-S. Wang ◽  
...  

Ingenol 3,5,20-triacetate has recently been identified as a highly potent and selective inhibitor of HIV replication in vitro. To evaluate the potential of ingenol derivatives as anti-HIV agents, several ingenol derivatives have been synthesized and investigated for their anti-HIV activities, structure-activity relationships, and possible mechanisms of action. Among the ingenol derivatives, 13-hydroxyingenol-3-(2,3-dimethylbutanoate)-13-dodecanoate (RD4-2138) proved to be a highly potent and selective inhibitor of HIV replication. Its 50% effective concentration for viral replication in MT-4 cells was 0.07-0.5 nM depending on viral strains, including HIV-2. This concentration was approximately 105-fold lower than its cytotoxic threshold. RD4-2138 was also inhibitory to the syncytium formation induced by cocultivation of Molt-4 cells with Molt-4/IIIB cells (Molt-4 cells chronically infected with HIV-1). Some correlation was observed with the ingenol derivatives between their inhibitory effects on HTLV-IIIB replication and surface CD4 expression in MT-4 cells, suggesting that the mechanism of inhibition is in part attributed to the inhibition of virus adsorption through down-regulation of CD4 molecules in the host cells. However, such correlation was not identified between the inhibition of HTLV-IIIB and the activation of protein kinase C. Thus, they might have a potential as effective anti-HIV agents when toxicity in vivo could be elucidated.


2000 ◽  
Vol 11 (2) ◽  
pp. 157-164 ◽  
Author(s):  
Seiji Kageyama ◽  
Masahiko Kurokawa ◽  
Kimiyasu Shiraki

It has been reported that extracts of the spike of Prunella vulgaris (PS) exhibit anti-HIV activity at the adsorption and reverse transcription stages. In this study, the actual activity of PS in cells, kinetic analysis of the inhibitory activity of PS against HIV reverse transcriptase and the feasibility of oral administration were examined. First, to clarify whether this extract shows anti-HIV activity in cells in vitro, the number of copies of proviral DNA in HIV-exposed cells was calculated. The number of copies was significantly decreased in cells cultured in the presence of PS extract, but not in the presence of dextran sulphate. The activity of PS extract in the cells was also assessed by the drug addition test, during and after HIV adsorption. PS extract and dextran sulphate suppressed HIV production to similar levels when added after HIV adsorption. However, only PS extract suppressed HIV production at the same concentration when the drugs were added during HIV adsorption. Presumably, the penetration of the PS extract into the cells was required for this activity. Secondly, fractionated PS inhibited HIV reverse transcription in a non-competitive manner. This fractionated PS kept anti-HIV activity, but inhibited HIV replication and adsorption to a lesser extent compared to dextran sulphate. Lastly, an active component(s) was detected in plasma in vivo, after injection into the intestine, which demonstrates the feasibility of oral administration dosing.


2020 ◽  
pp. 40-50
Author(s):  
A. Nikitina

Analysis of literature data presented in search engines — Elibrary, PubMed, Cochrane — concerning the risk of developing type I allergic reactions in patients with blood diseases is presented. It is shown that the most common cause of type I allergic reactions is drugs included in the treatment regimens of this category of patients. The article presents statistics on the increase in the number of drug allergies leading to cases of anaphylactic shock in patients with blood diseases. Modern methods for the diagnosis of type I allergic reactions in vivo and in vitro are considered.


2018 ◽  
Vol 18 (5) ◽  
pp. 321-368 ◽  
Author(s):  
Juan A. Bisceglia ◽  
Maria C. Mollo ◽  
Nadia Gruber ◽  
Liliana R. Orelli

Neglected diseases due to the parasitic protozoa Leishmania and Trypanosoma (kinetoplastids) affect millions of people worldwide, and the lack of suitable treatments has promoted an ongoing drug discovery effort to identify novel nontoxic and cost-effective chemotherapies. Polyamines are ubiquitous small organic molecules that play key roles in kinetoplastid parasites metabolism, redox homeostasis and in the normal progression of cell cycles, which differ from those found in the mammalian host. These features make polyamines attractive in terms of antiparasitic drug development. The present work provides a comprehensive insight on the use of polyamine derivatives and related nitrogen compounds in the chemotherapy of kinetoplastid diseases. The amount of literature on this subject is considerable, and a classification considering drug targets and chemical structures were made. Polyamines, aminoalcohols and basic heterocycles designed to target the relevant parasitic enzyme trypanothione reductase are discussed in the first section, followed by compounds directed to less common targets, like parasite SOD and the aminopurine P2 transporter. Finally, the third section comprises nitrogen compounds structurally derived from antimalaric agents. References on the chemical synthesis of the selected compounds are reported together with their in vivo and/or in vitro IC50 values, and structureactivity relationships within each group are analyzed. Some favourable structural features were identified from the SAR analyses comprising protonable sites, hydrophobic groups and optimum distances between them. The importance of certain pharmacophoric groups or amino acid residues in the bioactivity of polyamine derived compounds is also discussed.


2021 ◽  
Vol 8 (3) ◽  
pp. 39
Author(s):  
Britani N. Blackstone ◽  
Summer C. Gallentine ◽  
Heather M. Powell

Collagen is a key component of the extracellular matrix (ECM) in organs and tissues throughout the body and is used for many tissue engineering applications. Electrospinning of collagen can produce scaffolds in a wide variety of shapes, fiber diameters and porosities to match that of the native ECM. This systematic review aims to pool data from available manuscripts on electrospun collagen and tissue engineering to provide insight into the connection between source material, solvent, crosslinking method and functional outcomes. D-banding was most often observed in electrospun collagen formed using collagen type I isolated from calfskin, often isolated within the laboratory, with short solution solubilization times. All physical and chemical methods of crosslinking utilized imparted resistance to degradation and increased strength. Cytotoxicity was observed at high concentrations of crosslinking agents and when abbreviated rinsing protocols were utilized. Collagen and collagen-based scaffolds were capable of forming engineered tissues in vitro and in vivo with high similarity to the native structures.


Nanophotonics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 3023-3034
Author(s):  
Weiyuan Liang ◽  
Dou Wang ◽  
Xiaohui Ren ◽  
Chenchen Ge ◽  
Hanyue Wang ◽  
...  

AbstractTwo-dimensional black phosphorus (BP) has been demonstrated to be promising in photoelectronic devices, electrode materials, and biomedicine owing to its outstanding properties. However, the application of BP has been hindered by harsh preparation conditions, high costs, and easy degradation in ambient condition. Herein, we report a facile and cost-effective strategy for synthesis of orthorhombic phase BP and a kind of BP-reduced graphene oxide (BP/rGO) hybrids in which BP remains stable for more than 4 weeks ascribed to the formation of phosphorus-carbon covalent bonds between BP and rGO as well as the protection effect of the unique wrinkle morphology of rGO nanosheets. Surface modification BP/rGO hybrids (PEGylated BP/rGO) exhibit excellent photothermal performance with photothermal conversion efficiency as high as 57.79% at 808 nm. The BP/rGO hybrids exhibit enhanced antitumor effects both in vitro and in vivo, showing promising perspectives in biomedicine.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Zeping Qiu ◽  
Jingwen Zhao ◽  
Fanyi Huang ◽  
Luhan Bao ◽  
Yanjia Chen ◽  
...  

AbstractMyocardial fibrosis and ventricular remodeling were the key pathology factors causing undesirable consequence after myocardial infarction. However, an efficient therapeutic method remains unclear, partly due to difficulty in continuously preventing neurohormonal overactivation and potential disadvantages of cell therapy for clinical practice. In this study, a rhACE2-electrospun fibrous patch with sustained releasing of rhACE2 to shape an induction transformation niche in situ was introduced, through micro-sol electrospinning technologies. A durable releasing pattern of rhACE2 encapsulated in hyaluronic acid (HA)—poly(L-lactic acid) (PLLA) core-shell structure was observed. By multiple in vitro studies, the rhACE2 patch demonstrated effectiveness in reducing cardiomyocytes apoptosis under hypoxia stress and inhibiting cardiac fibroblasts proliferation, which gave evidence for its in vivo efficacy. For striking mice myocardial infarction experiments, a successful prevention of adverse ventricular remodeling has been demonstrated, reflecting by improved ejection fraction, normal ventricle structure and less fibrosis. The rhACE2 patch niche showed clear superiority in long term function and structure preservation after ischemia compared with intramyocardial injection. Thus, the micro-sol electrospun rhACE2 fibrous patch niche was proved to be efficient, cost-effective and easy-to-use in preventing ventricular adverse remodeling.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peng Gao ◽  
Xianwei Ma ◽  
Ming Yuan ◽  
Yulan Yi ◽  
Guoke Liu ◽  
...  

AbstractUbiquitination is one of the most prevalent protein posttranslational modifications. Here, we show that E3 ligase Nedd4l positively regulates antiviral immunity by catalyzing K29-linked cysteine ubiquitination of TRAF3. Deficiency of Nedd4l significantly impairs type I interferon and proinflammatory cytokine production induced by virus infection both in vitro and in vivo. Nedd4l deficiency inhibits virus-induced ubiquitination of TRAF3, the binding between TRAF3 and TBK1, and subsequent phosphorylation of TBK1 and IRF3. Nedd4l directly interacts with TRAF3 and catalyzes K29-linked ubiquitination of Cys56 and Cys124, two cysteines that constitute zinc fingers, resulting in enhanced association between TRAF3 and E3 ligases, cIAP1/2 and HECTD3, and also increased K48/K63-linked ubiquitination of TRAF3. Mutation of Cys56 and Cys124 diminishes Nedd4l-catalyzed K29-linked ubiquitination, but enhances association between TRAF3 and the E3 ligases, supporting Nedd4l promotes type I interferon production in response to virus by catalyzing ubiquitination of the cysteines in TRAF3.


Sign in / Sign up

Export Citation Format

Share Document