Structure as Related to Rheological and Textural Properties and Water Binding Capacity of β-Lactoglobulin/Xanthan Gum Electrostatic Gels in Associative Conditions

Author(s):  
Xuan Thang Le ◽  
Sylvie L. Turgeon
Author(s):  
Francis Oluwadayo Asokogene ◽  
Muhammad Abbas Ahmad Zaini ◽  
Muhammad Misau Idris ◽  
Surajudeen Abdulsalam ◽  
El-Nafaty Aliyu Usman

Abstract The work was aimed at evaluating the adsorptive properties of neem leave/chitosan aggregates for methylene blue removal. The adsorbent was screened to form coarse (CCANL, 600 µm), medium (MCANL, 300 µm) and fine (FCANL, 150 µm) neem leave/chitosan particles. The samples were characterized for pH, water binding capacity (WBC), surface chemistry by Fourier transform infrared spectroscopy, surface morphology by scanning electron microscope and textural properties by Brunauer-Emmett-Teller method. CCANL, MCANL and FCANL possessed specific surface area of 255, 258 and 242 m2/g, respectively. The effects of initial concentration, adsorbent dosage, contact time, pH and temperature were studied. CCANL, MCANL and FCANL demonstrated adsorption capacity of 102, 92.5 and 105 mg/g, respectively, in which ionic interaction and mesopore filling were the possible adsorption mechanisms. The equilibrium data were well fitted by Redlich-Peterson model, suggesting a monolayer adsorption onto a heterogeneous surface of adsorbent. The kinetics data were best described by pseudo-second-order and intraparticle diffusion models, for which the film diffusion, intraparticle diffusion and surface adsorption could co-exist as the controlling steps in adsorption. Adsorption of methylene blue onto chitosan composites was spontaneous, endothermic and demonstrated increased randomness at solid-solution interface.


2020 ◽  
Vol 16 (3) ◽  
Author(s):  
Bingxi Ren ◽  
Hongchen Xie ◽  
Lulu Guo ◽  
Kai Zhong ◽  
Yina Huang ◽  
...  

AbstractMochi is a popular snack in Asia, but few studies explored applications of konjac glucomannan (KGM) combined with mochi. The textural and thermal properties, sensory and microstructural changes were measured from mochi, which performed mainly from glutinous rice flour and KGM blends of which KGM shared 1–5 %. About 1–3 % KGM substitution could improve sensory qualities of mochi. The color of mochi with different KGM concentration could be distinguished by the naked eye. The variants with 4–5 % KGM concentration exhibited high hardness, stickiness of texture parameters, and obvious changes in temperature peak of thermodynamic parameters. The reticular gelatinized microstructures of mochi showed increased aperture of cavities with enhanced matrix surrounded. These changes could be due to high water binding capacity of KGM. In general, 3 % KGM concentration could lead to desirable sensory and textural properties of mochi, indicating a potential of KGM for widespread usage in glutinous rice starch-based foods industry.


Author(s):  
Anuj Saklani ◽  
Ravinder Kaushik ◽  
Prince Chawla ◽  
Naveen Kumar ◽  
Mukul Kumar

Taro is a plant widely produced in tropical areas for its underground corms and it is used mainly as a vegetable. Its physicochemical, sensory properties and health benefits led to its use in value-added products. The cake is a high value-added bakery product and it needs a lower amount of gluten protein, therefore, taro flour (TF) was supplemented in wheat flour (WF) at different levels (10, 20, 30 and 40%). In connection with this, the incorporation of taro flour into wheat-based products has been reported to increase their nutritional and textural quality. The taro-supplemented cake showed higher mineral and fiber content, however, reduced caloric value. It was observed that taro supplementation reduced gluten and protein content and had higher oil and water binding capacity, therefore suitable for cake preparation. Taro cake had improved texture and sensory characteristics in comparison to wheat cake. It can be concluded that addition of taro for cake preparation improves nutrition and quality characteristics, therefore, it can be recommended to use taro for cake preparation.


2006 ◽  
Vol 19 (11) ◽  
pp. 1658-1664 ◽  
Author(s):  
Cong-Gui Chen ◽  
Borjigin Gerelt ◽  
Shao-Tong Jiang ◽  
Tadayuki Nishiumi ◽  
Atsushi Suzuki

Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2648
Author(s):  
Xiang-Li Ding ◽  
Lan-Jing Wang ◽  
Ting-Ting Li ◽  
Fei Wang ◽  
Zhen-Yang Quan ◽  
...  

In order to improve the quality of the gluten free rice bread (GFRB), pre-gelatinised rice flour (PGRF) was made and used to partially replace natural rice flour in the production of GFRB. The pre-gelatinisation parameters were optimised and the effects of PGRF on the quality of the GFRB and its batter were studied. The results showed that optimal PGRF was obtained when 50% total water was mixed with 1.0% rice flour and the mixture heated at 80 °C for 2 min. Supplementation with PGRF significantly improved the properties of GFRB by affecting its baking properties, textural properties, colour, and crumb grain features. Effects of PGRF on GFRB were mainly caused by the more closely packed gel structure of rice starch in the bread batter, the higher onset temperature during gelatinisation and the complex effect of PGRF on water-binding capacity in bread batter during the baking process. As the pre-gelatinisation parameters of flours and their effect on gluten-free baked products varied with grain variety, processing properties should be studied before using them, and emphasis should be placed on new techniques such as flour pre-gelatinisation to obtain gluten-free foods with improved quality.


Author(s):  
Ji Soo Yang ◽  
Junghoon Kim ◽  
Jungwoo Hahn ◽  
Young Jin Choi

In this study, a natural-based gelling agent comprised of blended flax seed gum (FSG), konjac glucomannan (KG), and agar gel (AG) was developed for application to control the textural properties of foods. The compound gels, including FSG, KG, and AG, were investigated to determine their physicochemical properties, including minimum gelling concentration, water binding capacity, water soluble index, and swelling power. In addition, we analyzed the rheological properties of the compound gel through texture analysis, frequency sweep, and creep and recovery. The microstructure of the compound gel was identified and compared with the viscoelastic properties of the gel. Overall, these results showed that the F4K6 (4:6:2 of FSG:KG:AG) could serve as an excellent gelling agent, which endowed food gel with the promoted elastic properties, water capacity, and rigid surface morphology. This work suggests that novel gelling agents, including FSG, KGM, and AG, successfully prepared food gels with improved physicochemical properties.


2018 ◽  
Vol 9 (7) ◽  
pp. 4017-4027 ◽  
Author(s):  
Minyi Han ◽  
Mathias P. Clausen ◽  
Morten Christensen ◽  
Els Vossen ◽  
Thomas Van Hecke ◽  
...  

The addition of dietary fibers can alleviate the deteriorated textural properties and water binding capacity (WBC) that may occur when the fat content is lowered directly in the formulas of comminuted meat products.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 873
Author(s):  
Huaiwen Yang ◽  
Chai-Chun Tsai ◽  
Jung-Shiun Jiang ◽  
Chi-Chung Hua

Modifying the consistency of a given edible fluid matrix by incorporating food thickeners is a common nursing remedy for individuals with dysphagia when adequate water consumption is a concern. As apple pectin (AP) offers nutraceutical benefits, properly formulated apple pectin (AP)-based thickeners featuring xanthan gum (XG) can be superior candidates for preparation of dysphagia-friendly matrices (DFMs). Our recruited DFMs exhibit fluid-like behavior (loss modulus > storage modulus, G” > G’) at lower AP concentrations (2 and 5%, w/w); they turn into weak/critical gels (G’ ≈ G”) as the concentration becomes higher (9%). In contrast, XG-DFMs display gel-like attributes with G’ > G”, even at rather low concentrations (<1%) and become more resistant to sugar, Na+, and Ca2+ modifications. The composite matrix of AP1.8XG0.2 (constraint at 2%) exhibits a confined viscosity of 278 ± 11.7 mPa∙s, which is considered a DFM, in comparison to only AP- or XG-thickened ones. The hardness measurements of XG0.6 and AP1.2XG0.8 are 288.33 ± 7.506 and 302.00 ± 9.849 N/m2, respectively, which potentially represent a promising formulation base for future applications with DFMs; these textural values are not significantly different from a commercially available product (p > 0.05) for dysphagia nursing administrations.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Dianbin Su ◽  
Xin-Di Zhu ◽  
Yong Wang ◽  
Dong Li ◽  
Li-Jun Wang

Abstract Citrus fiber dispersion with different concentrations (5–25 g/kg) was treated by high-pressure homogenization (90 and 160 MPa) for two cycles. The particle size distribution, hydration properties of powders, morphology and rheological measurements were carried out to study the microstructure and rheological properties changes by high-pressure homogenization (HPH). In conclusion, the HPH can reduce the particle size of fiber, improve the water holding capacity and water binding capacity. Furthermore, fiber shape can be modified from globular cluster to flake-like slices, and tiny pores can be formed on the surface of citrus fiber. The apparent viscosity, storage modulus and loss modulus were increased by HPH whereas the activation energy was reduced. The Hershcel–Bulkley model, Carreau model and Power Law mode were selected to evaluate the rheological properties.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 282
Author(s):  
Juan Fernández-Peláez ◽  
Priscila Guerra ◽  
Cristina Gallego ◽  
Manuel Gomez

One third of the food produced in the world is wasted. Bread is one of the most wasted foods both during the distribution process and in households. To use these breads, it is necessary to get to know the properties of the flours that can be obtained from them. The purpose of this work is to know how the type of bread and its zone (crumb or crust) influence the characteristics of the flours obtained from the wasted bread. For this, flours made from the crumbs and crusts of eight different breads have been analysed. Their hydration properties, cold and post-heating rheology and gelling properties as well as the colour of flours and gels have been studied. Bread flours present higher water-holding capacity (WHC) and water-binding capacity (WBC) values and higher elastic modulus (G’) and viscous modulus (G”) values, both in cold conditions and after heating, than wheat flours. However, they generate weaker gels. Crust flours, and the gels obtained from them, are darker than those from crumbs and their gels. In terms of hydration and rheology, pan and wholemeal bread flours are generally lower than other bread flours. These flours also generate softer gels, possibly caused by the dilution of starch with other components. It can be concluded that the properties shown by wasted bread flours allow them to be reintroduced in the food chain as an ingredient in different products.


Sign in / Sign up

Export Citation Format

Share Document