Integrated investigation of lipidome and related signaling pathways uncovers molecular mechanisms of tetramethylpyrazine and butylidenephthalide protecting endothelial cells under oxidative stress

2012 ◽  
Vol 8 (6) ◽  
pp. 1789 ◽  
Author(s):  
Jie Yang ◽  
Song Yang ◽  
Ying-Jin Yuan
2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Lingyu Yang ◽  
Dehai Xian ◽  
Xia Xiong ◽  
Rui Lai ◽  
Jing Song ◽  
...  

Proanthocyanidins (PCs) are naturally occurring polyphenolic compounds abundant in many vegetables, plant skins (rind/bark), seeds, flowers, fruits, and nuts. Numerousin vitroandin vivostudies have demonstrated myriad effects potentially beneficial to human health, such as antioxidation, anti-inflammation, immunomodulation, DNA repair, and antitumor activity. Accumulation of prooxidants such as reactive oxygen species (ROS) exceeding cellular antioxidant capacity results in oxidative stress (OS), which can damage macromolecules (DNA, lipids, and proteins), organelles (membranes and mitochondria), and whole tissues. OS is implicated in the pathogenesis and exacerbation of many cardiovascular, neurodegenerative, dermatological, and metabolic diseases, both through direct molecular damage and secondary activation of stress-associated signaling pathways. PCs are promising natural agents to safely prevent acute damage and control chronic diseases at relatively low cost. In this review, we summarize the molecules and signaling pathways involved in OS and the corresponding therapeutic mechanisms of PCs.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Jin Wang ◽  
Zhi-xin Li ◽  
Dan-dan Yang ◽  
Pei-qi Liu ◽  
Zhi-qiang Wang ◽  
...  

Oxidative stress is detrimental to animals and can depress the growth performance and regulate the gene expression of animals. However, it remains unclear how oxidative stress regulates the expression of long noncoding RNAs (lncRNAs) and mRNAs. Therefore, the purpose of this article was to explore the profiles of lncRNAs and mRNAs in the liver of piglets under oxidative stress. Here, we constructed a piglet oxidative stress model induced by diquat and evaluated the effects of oxidative stress on the growth performance and antioxidant enzyme activity of piglets. We also used RNA-Seq to examine the global expression of lncRNAs and mRNAs in piglets under oxidative stress. The targets of lncRNAs and mRNAs were enriched in gene ontology (GO) terms and signaling pathways. The results show that the growth performance and activities of antioxidant enzymes were decreased in piglets under oxidative stress. Moreover, eight lncRNAs (6 upregulated and 2 downregulated) and 30 mRNAs (8 upregulated and 22 downregulated) were differentially expressed in the oxidative stress group of piglets compared to the negative control group. According to biological processes in enriched GO terms, the oxoacid metabolic process, intramolecular oxidoreductase activity, and oxidation-reduction process play important roles in oxidative stress. Pathway analysis showed that the signaling pathways involved in insulin and glucose metabolism had a close relationship with oxidative stress. Furtherin vitroexperiments showed that the expression of the upregulated geneGNMTwas significantly increased in primary porcine hepatocytes after diquat stimulation. In contrast, the level of the downregulated geneGCKwas significantly decreased at 12 h in primary porcine hepatocytes after diquat stimulation. Our results expand our knowledge of the lncRNAs and mRNAs transcribed in the livers of piglets under oxidative stress and provide a basis for future research on the molecular mechanisms mediating oxidative stress and tissue damage.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Dehai Xian ◽  
Jing Song ◽  
Lingyu Yang ◽  
Xia Xiong ◽  
Rui Lai ◽  
...  

Angiogenesis is the process of new vessel formation, which sprouts from preexisting vessels. This process is highly complex and primarily involves several key steps, including stimulation of endothelial cells by growth factors, degradation of the extracellular matrix by proteolytic enzymes, migration and proliferation of endothelial cells, and capillary tube formation. Currently, it is considered that multiple cytokines play a vital role in this process, which consist of proangiogenic factors (e.g., vascular endothelial growth factor, fibroblast growth factors, and angiopoietins) and antiangiogenic factors (e.g., endostatin, thrombospondin, and angiostatin). Angiogenesis is essential for most physiological events, such as body growth and development, tissue repair, and wound healing. However, uncontrolled neovascularization may contribute to angiogenic disorders. In physiological conditions, the above promoters and inhibitors function in a coordinated way to induce and sustain angiogenesis within a limited period of time. Conversely, the imbalance between proangiogenic and antiangiogenic factors could cause pathological angiogenesis and trigger several diseases. With insights into the molecular mechanisms of angiogenesis, increasing reports have shown that a close relationship exists between angiogenesis and oxidative stress (OS) in both physiological and pathological conditions. OS, an imbalance between prooxidant and antioxidant systems, is a cause and consequence of many vascular complains and serves as one of the biomarkers for these diseases. Furthermore, emerging evidence supports that OS and angiogenesis play vital roles in many dermatoses, such as psoriasis, atopic dermatitis, and skin tumor. This review summarizes recent findings on the role of OS as a trigger of angiogenesis in skin disorders, highlights newly identified mechanisms, and introduces the antiangiogenic and antioxidant therapeutic strategies.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Jingdian Zhang ◽  
Yumeng Wang ◽  
Xiaofeng Liu ◽  
Ruben K. Dagda ◽  
Ying Zhang

Adenosine monophosphate-activated protein kinase (AMPK) is a conserved, redox-activated master regulator of cell metabolism. In the presence of oxidative stress, AMPK promotes cytoprotection by enhancing the conservation of energy by suppressing protein translation and by stimulating autophagy. AMPK interplays with protein kinase A (PKA) to regulate oxidative stress, mitochondrial function, and cell survival. AMPK and dual-specificity A-kinase anchoring protein 1 (D-AKAP1), a mitochondrial-directed scaffold of PKA, interact to regulate mitochondrial function and oxidative stress in cardiac and endothelial cells. Ischemia and diabetes, a chronic disease that increases the onset of cardiovascular diseases, suppress the cardioprotective effects of AMPK and PKA. Here, we review the molecular mechanisms by which AMPK and D-AKAP1/PKA interplay to regulate mitochondrial function, oxidative stress, and signaling pathways that prime endothelial cells, cardiac cells, and neurons for cytoprotection against oxidative stress. We discuss recent literature showing how temporal dynamics and localization of activated AMPK and PKA holoenzymes play a crucial role in governing cellular bioenergetics and cell survival in models of ischemia, cardiovascular diseases, and diabetes. Finally, we propose therapeutic strategies that tout localized PKA and AMPK signaling to reverse mitochondrial dysfunction, oxidative stress, and death of neurons and cardiac and endothelial cells during ischemia and diabetes.


2006 ◽  
Vol 20 (4) ◽  
Author(s):  
Manuela Bartoli ◽  
Daniel H Platt ◽  
Tahira Lemtalsi ◽  
Azza El Remessy ◽  
Modesto Rojas ◽  
...  

2021 ◽  
Author(s):  
Shymaa A El badawy ◽  
Hanan A. Ogaly ◽  
Reham M. M. Abd-Elsalam ◽  
Asmaa Azouz

The present study investigated the gastroprotective activity of benzyl Isothiocyanates (BITC) on indomethacin-induced gastric injury in a rat model and explicated the possible involved biochemical, cellular and molecular mechanisms. Rat...


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Mengyang Zhang ◽  
Changcheng Luo ◽  
Dongxu Lin ◽  
Kai Cui ◽  
Zhong Chen ◽  
...  

Objective. The aim of the present study was to investigate the protective effects and mechanisms of KLK1 on aging-related prostate alterations and search clues about the application of KLK1 to the treatment of human BPH. Methods. Thirty-six rats including 26 male wild-type SD rats and 10 transgenic rats were fed to 3- or 18-month-old and divided into three groups: young WTR (yWTR) as the control ( n = 16 ), aged WTR (aWTR) ( n = 10 ), and aged TGR (aTGR) ( n = 10 ). The prostates of the three groups of rats (10 rats per group) were harvested to evaluate the levels of KLK1 expression, oxidative stress, fibrosis, and involved signaling pathways, such as NO/cGMP, COX-2/PTGIS/cAMP, and TGF-β1/RhoA/ROCK1, via quantitative PCR, Western blot, histological examinations, and ELISA. Moreover, the remaining 6 yWTRs were sacrificed to obtain primary prostate fibroblast and aortic endothelial cells, and a coculture system was built with the cells for the verification of above signaling pathways in vitro. And the direct effects of bradykinin on prostate cells were detected by MTT experiment. Prostate specimens of 47 patients (age from 48 to 92 years) undergoing BPH surgery were collected after approval. Histological examinations and KLK1 IHC were preformed to analyze the relationship between KLK1 expression and age and prostate fibrosis. Results. The human KLK1 gene only existed and was expressed in aTGR. The prostate of young rats expressed more KLK1 than the aged and the expression of KLK1 in prostate decreased with age in humans ( r = − 0.347 , P = 0.018 ). Compared to the aWTR group, the yWTR and aTGR groups showed milder fibrosis, less oxidative stress, upregulated NO/cGMP, and COX-2/PTGIS/cAMP signaling pathways and inhibited TGF-β1/RhoA/ROCK1 signaling pathway. In the coculture system, KLK1 suppressed TGF-β1-mediated fibroblast-to-myofibroblast transdifferentiation via cleaving LMWK to produce the BK which upregulate eNOS expression and NO production in endothelial cells. BK not only slightly stimulated the proliferation ability of prostatic stromal cells but also upregulated iNOS and inhibited TGF-β1 expression in them. Conclusion. KLK1 protects prostate from oxidative stress and fibrosis via amplified NO/cGMP signal in aged rats. The decrease of KLK1 expression with aging is laying the groundwork for the application of KLK1 to the treatment of human BPH. The current experimental data showed that the side effects of KLK1 on the prostate cell were not obvious.


Sign in / Sign up

Export Citation Format

Share Document