scholarly journals Diquat Determines a Deregulation of lncRNA and mRNA Expression in the Liver of Postweaned Piglets

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Jin Wang ◽  
Zhi-xin Li ◽  
Dan-dan Yang ◽  
Pei-qi Liu ◽  
Zhi-qiang Wang ◽  
...  

Oxidative stress is detrimental to animals and can depress the growth performance and regulate the gene expression of animals. However, it remains unclear how oxidative stress regulates the expression of long noncoding RNAs (lncRNAs) and mRNAs. Therefore, the purpose of this article was to explore the profiles of lncRNAs and mRNAs in the liver of piglets under oxidative stress. Here, we constructed a piglet oxidative stress model induced by diquat and evaluated the effects of oxidative stress on the growth performance and antioxidant enzyme activity of piglets. We also used RNA-Seq to examine the global expression of lncRNAs and mRNAs in piglets under oxidative stress. The targets of lncRNAs and mRNAs were enriched in gene ontology (GO) terms and signaling pathways. The results show that the growth performance and activities of antioxidant enzymes were decreased in piglets under oxidative stress. Moreover, eight lncRNAs (6 upregulated and 2 downregulated) and 30 mRNAs (8 upregulated and 22 downregulated) were differentially expressed in the oxidative stress group of piglets compared to the negative control group. According to biological processes in enriched GO terms, the oxoacid metabolic process, intramolecular oxidoreductase activity, and oxidation-reduction process play important roles in oxidative stress. Pathway analysis showed that the signaling pathways involved in insulin and glucose metabolism had a close relationship with oxidative stress. Furtherin vitroexperiments showed that the expression of the upregulated geneGNMTwas significantly increased in primary porcine hepatocytes after diquat stimulation. In contrast, the level of the downregulated geneGCKwas significantly decreased at 12 h in primary porcine hepatocytes after diquat stimulation. Our results expand our knowledge of the lncRNAs and mRNAs transcribed in the livers of piglets under oxidative stress and provide a basis for future research on the molecular mechanisms mediating oxidative stress and tissue damage.

2022 ◽  
Vol 8 ◽  
Author(s):  
Zhen Yang ◽  
Yanan Mo ◽  
Feng Cheng ◽  
Hongjuan Zhang ◽  
Ruofeng Shang ◽  
...  

Oxidative stress is the redox imbalance state of organisms that involves in a variety of biological processes of diseases. Limonium aureum (L.) Hill. is an excellent wild plant resource in northern China, which has potential application value for treating oxidative stress. However, there are few studies that focused on the antioxidant effect and related mechanism of L. aureum. Thus, the present study combining systematic network pharmacology and molecular biology aimed to investigate the antioxidant effects of L. aureum and explore its underlying anti-oxidation mechanisms. First, the antioxidant activity of L. aureum extracts was confirmed by in vitro and intracellular antioxidant assays. Then, a total of 11 bioactive compounds, 102 predicted targets, and 70 antioxidant-related targets were obtained from open source databases. For elucidating the molecular mechanisms of L. aureum, the PPI network and integrated visualization network based on bioinformatics assays were constructed to preliminarily understand the active compounds and related targets. The subsequent enrichment analysis results showed that L. aureum mainly affect the biological processes involving oxidation-reduction process, response to drug, etc., and the interference with these biological processes might be due to the simultaneous influence on multiple signaling pathways, including the HIF-1 and ERBB signaling pathways. Moreover, the mRNA levels of predicted hub genes were measured by qRT-PCR to verify the regulatory effect of L. aureum on them. Collectively, this finding lays a foundation for further elucidating the anti-oxidative damage mechanism of L. aureum and promotes the development of therapeutic drugs for oxidative stress.


2021 ◽  
Vol 11 (8) ◽  
pp. 693
Author(s):  
Corina Daniela Ene ◽  
Simona Roxana Georgescu ◽  
Mircea Tampa ◽  
Clara Matei ◽  
Cristina Iulia Mitran ◽  
...  

The interaction of reactive oxygen species (ROS) with lipids, proteins, nucleic acids and hydrocarbonates promotes acute and chronic tissue damage, mediates immunomodulation and triggers autoimmunity in systemic lupus erythematous (SLE) patients. The aim of the study was to determine the pathophysiological mechanisms of the oxidative stress-related damage and molecular mechanisms to counteract oxidative stimuli in lupus nephritis. Our study included 38 SLE patients with lupus nephritis (LN group), 44 SLE patients without renal impairment (non-LN group) and 40 healthy volunteers as control group. In the present paper, we evaluated serum lipid peroxidation, DNA oxidation, oxidized proteins, carbohydrate oxidation, and endogenous protective systems. We detected defective DNA repair mechanisms via 8-oxoguanine-DNA-glycosylase (OGG1), the reduced regulatory effect of soluble receptor for advanced glycation end products (sRAGE) in the activation of AGE-RAGE axis, low levels of thiols, disulphide bonds formation and high nitrotyrosination in lupus nephritis. All these data help us to identify more molecular mechanisms to counteract oxidative stress in LN that could permit a more precise assessment of disease prognosis, as well as developing new therapeutic targets.


Author(s):  
Patricia Tomás-Simó ◽  
Luis D’Marco ◽  
María Romero-Parra ◽  
Mari Carmen Tormos-Muñoz ◽  
Guillermo Sáez ◽  
...  

Background: Cardiovascular complications are the leading cause of morbidity and mortality at any stage of chronic kidney disease (CKD). Moreover, the high rate of cardiovascular mortality observed in these patients is associated with an accelerated atherosclerosis process that likely starts at the early stages of CKD. Thus, traditional and non-traditional or uremic-related factors represent a link between CKD and cardiovascular risk. Among non-conventional risk factors, particular focus has been placed on anaemia, mineral and bone disorders, inflammation, malnutrition and oxidative stress and, in this regard, connections have been reported between oxidative stress and cardiovascular disease in dialysis patients. Methods: We evaluated the oxidation process in different molecular lines (proteins, lipids and genetic material) in 155 non-dialysis patients at different stages of CKD and 45 healthy controls. To assess oxidative stress status, we analyzed oxidized glutathione (GSSG), reduced glutathione (GSH) and the oxidized/reduced glutathione ratio (GSSG/GSH) and other oxidation indicators, including malondialdehyde (MDA) and 8-oxo-2’-deoxyguanosine (8-oxo-dG). Results: An active grade of oxidative stress was found from the early stages of CKD onwards, which affected all of the molecular lines studied. We observed a heightened oxidative state (indicated by a higher level of oxidized molecules together with decreased levels of antioxidant molecules) as kidney function declined. Furthermore, oxidative stress-related alterations were significantly greater in CKD patients than in the control group. Conclusions: CKD patients exhibit significantly higher oxidative stress than healthy individuals, and these alterations intensify as eGFR declines, showing significant differences between CKD stages. Thus, future research is warranted to provide clearer results in this area.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Lingyu Yang ◽  
Dehai Xian ◽  
Xia Xiong ◽  
Rui Lai ◽  
Jing Song ◽  
...  

Proanthocyanidins (PCs) are naturally occurring polyphenolic compounds abundant in many vegetables, plant skins (rind/bark), seeds, flowers, fruits, and nuts. Numerousin vitroandin vivostudies have demonstrated myriad effects potentially beneficial to human health, such as antioxidation, anti-inflammation, immunomodulation, DNA repair, and antitumor activity. Accumulation of prooxidants such as reactive oxygen species (ROS) exceeding cellular antioxidant capacity results in oxidative stress (OS), which can damage macromolecules (DNA, lipids, and proteins), organelles (membranes and mitochondria), and whole tissues. OS is implicated in the pathogenesis and exacerbation of many cardiovascular, neurodegenerative, dermatological, and metabolic diseases, both through direct molecular damage and secondary activation of stress-associated signaling pathways. PCs are promising natural agents to safely prevent acute damage and control chronic diseases at relatively low cost. In this review, we summarize the molecules and signaling pathways involved in OS and the corresponding therapeutic mechanisms of PCs.


1998 ◽  
Vol 62 (4) ◽  
pp. 1264-1300 ◽  
Author(s):  
Michael C. Gustin ◽  
Jacobus Albertyn ◽  
Matthew Alexander ◽  
Kenneth Davenport

SUMMARY A cascade of three protein kinases known as a mitogen-activated protein kinase (MAPK) cascade is commonly found as part of the signaling pathways in eukaryotic cells. Almost two decades of genetic and biochemical experimentation plus the recently completed DNA sequence of the Saccharomyces cerevisiae genome have revealed just five functionally distinct MAPK cascades in this yeast. Sexual conjugation, cell growth, and adaptation to stress, for example, all require MAPK-mediated cellular responses. A primary function of these cascades appears to be the regulation of gene expression in response to extracellular signals or as part of specific developmental processes. In addition, the MAPK cascades often appear to regulate the cell cycle and vice versa. Despite the success of the gene hunter era in revealing these pathways, there are still many significant gaps in our knowledge of the molecular mechanisms for activation of these cascades and how the cascades regulate cell function. For example, comparison of different yeast signaling pathways reveals a surprising variety of different types of upstream signaling proteins that function to activate a MAPK cascade, yet how the upstream proteins actually activate the cascade remains unclear. We also know that the yeast MAPK pathways regulate each other and interact with other signaling pathways to produce a coordinated pattern of gene expression, but the molecular mechanisms of this cross talk are poorly understood. This review is therefore an attempt to present the current knowledge of MAPK pathways in yeast and some directions for future research in this area.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Zhen Luo ◽  
Wei Zhu ◽  
Qi Guo ◽  
Wenli Luo ◽  
Jing Zhang ◽  
...  

This study investigated the effects of weaning on the hepatic redox status, apoptosis, function, and the mitogen-activated protein kinase (MAPK) signaling pathways during the first week after weaning in piglets. A total of 12 litters of piglets were weaned at d 21 and divided into the weaning group (WG) and the control group (CG). Six piglets from each group were slaughtered at d 0 (d 20, referred to weaning), d 1, d 4, and d 7 after weaning. Results showed that weaning significantly increased the concentrations of hepatic free radicals H2O2and NO, malondialdehyde (MDA), and 8-hydroxy-2′-deoxyguanosine (8-OHdG), while significantly decreasing the inhibitory hydroxyl ability (IHA) and glutathione peroxidase (GSH-Px), and altered the level of superoxide dismutase (SOD). The apoptosis results showed that weaning increased the concentrations of caspase-3, caspase-8, caspase-9 and the ratio of Bax/Bcl-2. In addition, aspartate aminotransferase transaminase (AST) and alanine aminotransferase (ALT) in liver homogenates increased after weaning. The phosphorylated JNK and ERK1/2 increased, while the activated p38 initially decreased and then increased. Our results suggested that weaning increased the hepatic oxidative stress and aminotransferases and initiated apoptosis, which may be related to the activated MAPK pathways in postweaning piglets.


2019 ◽  
pp. 1-11
Author(s):  
A. F. Ogori ◽  
A. T. Girgih ◽  
J. O. Abu ◽  
M. O. Eke

The bioactive peptides produced by enzymatic hydrolysis, acid hydrolysis and fermentation approach have been identified and used widely in research. These methods are important in enhancement or prevention and management of chronic diseases that are ravaging the world such as type -2-diabetes, hypertension, oxidative stress, cancer, and obesity. Sources of bioactive peptides have been established ranging from plant to animal and marine foods that have pharmacological effects; however these effects are dependent on target cells and peptides structure and conformations.  Plants such as hemp and animal source such as milk among others validate the findings of In vitro and In-vivo studies and the efficiency of these bioactive peptides in the management of certain chronic diseases. This article reviews the literature on bioactive peptides with concern on food sources, production and bioactive peptides application in enhancement of health and management of hypertension, diabetes and oxidative stress.  Future research efforts on bioactive peptides should be directed towards elucidating specific sequenced bioactive peptides and their molecular mechanisms, through In-vivo and In-vitro studies for specific health condition in human using nutrigenomics and peptideomic approaches.


2020 ◽  
Author(s):  
Akeem Babatunde Sikiru ◽  
Arangasamy Arunachalam ◽  
Stephen Sunday Acheneje Egena ◽  
Sejian Veerasamy ◽  
Ippala Janardhan Reddy ◽  
...  

Abstract Background Chlorella vulgaris is a unicellular microalga that is rich in antioxidant, its supplementation has been reported to reduce oxidative stress via upregulations of antioxidant genes. However, there are scarce reports on its effect on antioxidant protein expressions in rabbits – a situation which necessitate an untargeted proteomic profile analysis due to its supplementation. This is because untargeted proteomics profiling is an approach suitable for assessing the effectiveness of genes code translation into polypeptide chains folded into functional proteins used for specific sub-cellular or extracellular physiological activities. It remains one of the comparative avenues for evaluating the efficacies of drugs and nutraceutical agents including antioxidants. In this study, the antioxidant efficacy of a microalga Chlorella vulgaris was evaluated at molecular levels using its hepatic protein expression in rabbit models. Results After 120 days of the microalga supplementation, protein was extracted from liver of the rabbits for untargeted proteomics profiling using LC-MS/Orbitrap Fusion Tribrid™ peptides quantifier and sequencer. There were five-hundred and eleven (511) proteins identified; and among the proteins, 191 were specific to the control group while 186 were specific to the Treatment group; and 134 were common to both groups. Independent samples t-test of the protein abundance indicated that there was a significant difference (p = 0.01) between the treatment and the control groups. There was also a significant reduction in the malondialdehyde concentrations (p = 0.01), higher total antioxidant capacities (p = 0.002), and increased antioxidant enzyme activities (p = 0.05) between the treatment and control groups.Conclusion The study concluded that one of the molecular mechanisms associated with Chlorella vulgaris intake reduction of the hepatic oxidative stress is increased abundances of antioxidant proteins and reduction of the lipid peroxidation and these led to a suggestion that the microalga is a potent antioxidant agent suitable for protecting against oxidative stress in rabbits and other domestic food producing animals.


2019 ◽  
pp. 1-11
Author(s):  
A. F. Ogori ◽  
A. T. Girgih ◽  
J. O. Abu ◽  
M. O. Eke

The bioactive peptides produced by enzymatic hydrolysis, acid hydrolysis and fermentation approach have been identified and used widely in research. These methods are important in enhancement or prevention and management of chronic diseases that are ravaging the world such as type -2-diabetes, hypertension, oxidative stress, cancer, and obesity. Sources of bioactive peptides have been established ranging from plant to animal and marine foods that have pharmacological effects; however these effects are dependent on target cells and peptides structure and conformations.  Plants such as hemp and animal source such as milk among others validate the findings of In vitro and In-vivo studies and the efficiency of these bioactive peptides in the management of certain chronic diseases. This article reviews the literature on bioactive peptides with concern on food sources, production and bioactive peptides application in enhancement of health and management of hypertension, diabetes and oxidative stress.  Future research efforts on bioactive peptides should be directed towards elucidating specific sequenced bioactive peptides and their molecular mechanisms, through In-vivo and In-vitro studies for specific health condition in human using nutrigenomics and peptideomic approaches.


2019 ◽  
Vol 20 (18) ◽  
pp. 4549 ◽  
Author(s):  
Yan Lin ◽  
Lujie Li ◽  
Yang Li ◽  
Ke Wang ◽  
Dongqin Wei ◽  
...  

To study the effects of maternal fiber supplementation during pregnancy on the testicular development of male offspring and its possible mechanisms, 36 sows (Landrace × Yorkshire) were allocated to either a control diet (n = 18) or a fiber diet (the control diet supplemented with 22.60 g/kg inulin and 181.60 g/kg cellulosic; n = 18) during pregnancy. The body and testes weight of the offspring, 7-day-old piglets, was recorded. Testes were collected for further analyses. Results showed that the testicular organ index and the number of spermatogonia in single seminiferous tubule were higher in piglets from the fiber group than from the control group (p < 0.05). In addition, a significant increase in the concentration of glucose, lactate, and lipids in the testes was found in the fiber group (p < 0.05). Proteomic analysis suggested that there were notable differences in glucolipid transport and metabolism, oxidation, and male reproduction-related proteins expression between the two groups (p < 0.05). Results revealed that the most enriched signaling pathways in the fiber group testes included starch and sucrose metabolism, fatty acid metabolism, glutathione metabolism, and the renin-angiotensin system. mRNA expression analyzes further confirmed the importance of some signaling pathways in maternal fiber nutrition regulating offspring testicular development. Our results shed new light on the underlying molecular mechanisms of maternal fiber nutrition on offspring testicular development and provided a valuable insight for future explorations of the effect of maternal fiber nutrition on man reproduction.


Sign in / Sign up

Export Citation Format

Share Document