Rheological Characteristics and Methodology of Ice Cream: A Review

2020 ◽  
Vol 16 (5) ◽  
pp. 666-674
Author(s):  
Amir M. Mortazavian ◽  
Najme Kheynoor ◽  
Zahra Pilevar ◽  
Zhaleh Sheidaei ◽  
Samira Beikzadeh ◽  
...  

The rheological analysis is important analytical tools used to obtain fundamental information about food structure. For instance, the properties of flow of liquid and semi-solidity are characterized by the consistency and flow behavior experiments as two important rheological parameters. The rheological parameters of foods are applied in quality control of the products and processing of food products such as energy input calculations, process design, equipment selection, and especially for deciding on heat exchangers and pumps. Steady flow behavior, oscillatory, and penetration tests are among commonly used parameters for evaluating rheological characteristics of ice cream. The purpose of this paper is to provide an overview of recent experiments and methods for measuring the rheological and texture properties of ice cream.

Author(s):  
Florina A. SILAGHI ◽  
Alessandro GIUNCHI ◽  
Angelo FABBRI ◽  
Luigi RAGNI

The control of ice cream powder mixture production is carried out evaluating the ice cream liquid phase. The present study was conduced on ice cream and unfrozen liquid phase in order to indirectly evaluate the rheological properties by measuring the powder mixture. The calibration set was formed by samples with different percentage of thickeners, maintaining constant the concentration of the other remaining compounds. After the NIR acquisitions the powders were mixed with warm milk, blended and than settled in order to obtain the unfrozen liquid phase needed for the rheological measurements. For each recipe three batches were prepared. The flow curves were evaluated by using the Ostwald de Waele’s equation and the goodness of fit was evaluated by the R2, which was above 0.95. Predictive models of rheological parameters were set up by means of PLS regressions in order to predict the consistency coefficient (K) and the flow behavior index (n) from spectral acquisitions. High correlation of calibration was found for both parameters and NIR spectra obtaining R2 of 0.884 for K and 0.874 for n. The good prediction of the models encourages applying them to reduce significantly the time of the powder mixing control during production.


1962 ◽  
Vol 2 (03) ◽  
pp. 211-215 ◽  
Author(s):  
J.G. Savins ◽  
G.C. Wallick ◽  
W.R. Foster

Abstract A comprehensive review of the salient features of the differentiation method of rheological analysis in Poiseuille flow from its inception circa 1928 is presented. Here no initial assumptions regarding the nature of the function relating rheological parameters to observed kinematical and dynamical parameters are required in the data-analysis process. In contrast, the integration method involves interpreting flow properties in terms of a particular ideal model. It is shown that, although both methods represent modes of solution of the same integral equation, being relatively bias-free, the differentiation method offers a more discriminating procedure for rheological analysis. The application to problems involving plane Poiseuille flow is also described. Introduction In most instances, the approach to the problem of interpreting the rheological properties of various compositions as they ate affected by changes in chemical or physical environment, as saying the characteristics of a particular constituent of a suspension, analyzing flow behavior in terms of interactions between components in a system, to cite but a few examples, has been in terms of what Hersey terms the integration method. Briefly, it consists of interpreting flow properties in terms of a particular ideal model. The usual practice of the integration method is to choose a model with a minimum number of parameters because, other things being equal, it is desirable to use the simplest model which will describe the behavior of a real material and yet be mathematically tract able for the requirements of data analysis. This expression is then substituted into an equation which relates observed kinematical and dynamical quantities, such as volume flux Q and pressure gradient J, and angular velocity and torque T, in a capillary and concentric cylinder apparatus, respectively. The rheological parameters appear on integrating, in an expression relating the pairs of observable quantities such as those just given. In many instances a particular model provides a good representation of rheological behavior over a reasonable range of compositional and environmental changes. just as often, however, it is obvious that the interpretation of rheological changes by the integration method is not providing realistic information about changes in flow behavior. A more general method of interpreting rheological data for a given material is to make no initial assumptions regarding the nature of the function relating rheological parameters to observed kinematical and dynamical quantities, e.g., flow rate and pressure drop in capillary flow or angular velocity and torque in a rotational viscometer. This general method Hersey terms the differentiation method. Instead of integrating, one differentiates the integral equation with respect to one of the limits, i.e., one of the boundary conditions; the resulting expression contains the same observable quantities just given, their derivatives, and the rheological function evaluated at that boundary. By obtaining these derivatives from experimental ‘data, graphically or by a computer routine, they can be substituted into the differential equation and a graphical form of the function derived. THEORY OF THE DIFFERENTIATION METHOD FOR POISEUILLE-TYPE FLOWS In this introductory paper, two flow cases which are important in viscometry are considered (one for the first time) from the differentiation method of analysis, flow in a cylindrical tube and flow between fixed parallel surfaces of infinite extent, the basic integral equations being formulated in a manner analogous to the way they originally appeared in the literature. In addition, the following ideal conditions will be assumed:an absence of anomalous wall effects,isotropic behavior everywhere, andsteady laminar flow conditions. SPEJ P. 211^


Author(s):  
Pedro Esteves Duarte Augusto ◽  
Marcelo Cristianini ◽  
Albert Ibarz

The rheological characterization of food is important for efficient product and process design. Although its importance in semi-arid regions, there are only a few studies regarding the rheological properties of cactus pear products in the literature. The present work has used the Mitschka-Briggs-Steffe method for evaluation of the rheological behavior of cactus pear concentrated pulps. The pulps have shown pseudoplastic behavior. The flow behavior index (n) shows a constant value in the evaluated conditions, and its average value was considered in the evaluated temperature and concentration range. The consistency index (k) has shown dependency of concentration and temperature, being well modeled by a modified Arrhenius equation. Thus, the rheological parameters of cactus pear concentrated pulps can be obtained using a single equation, related with temperature, concentration and shear rate. The obtained data are potentially useful for future studies on product development, food properties and process design.


2010 ◽  
Vol 16 (1) ◽  
pp. 79-88 ◽  
Author(s):  
M. BahramParvar ◽  
S.M.A. Razavi ◽  
M.H.H. Khodaparast

The effect of two novel hydrocolloids known as Balangu seed gum (BSG) and palmate-tuber salep (PTS) with carboxymethylcellulose (CMC) on the rheological characteristics of a typical soft ice cream was studied. The power law model well described the flow behavior of mixes with a high correlation coefficient (r). The flow behavior index was in the range of 0.450-1.154, while the consistency coefficient varied from 0.051 to 6.822 Pa sn. All mixes showed a pseudoplastic behavior except the mix containing 0.3% PTS, which was found to have a slightly dilatant characteristic. An increase in the concentration was accompanied by an increase in the pseudoplasticity and consistency coefficient. The effect of selected gums on some sensory properties of a soft ice cream such as viscosity, coldness, firmness, degree of smoothness (coarseness), liquefying rate, body and texture and total acceptance has also been investigated in this work. The correlation between the apparent viscosity and sensory attributes has been determined because of the importance of viscosity in the quality evaluation of an ice cream. Taking into account the commercial ice cream properties, a 0.4% BSG gum concentration may be recommended.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jun Kameda ◽  
Hamada Yohei

AbstractSubmarine debris flows are mass movement processes on the seafloor, and are geohazards for seafloor infrastructure such as pipelines, communication cables, and submarine structures. Understanding the generation and run-out behavior of submarine debris flows is thus critical for assessing the risk of such geohazards. The rheological properties of seafloor sediments are governed by factors including sediment composition, grain size, water content, and physico-chemical conditions. In addition, extracellular polymeric substances (EPS) generated by microorganisms can affect rheological properties in natural systems. Here we show that a small quantity of EPS (~ 0.1 wt%) can potentially increase slope stability and decrease the mobility of submarine debris flows by increasing the internal cohesion of seafloor sediment. Our experiments demonstrated that the flow behavior of sediment suspensions mixed with an analogue material of EPS (xanthan gum) can be described by a Herschel–Bulkley model, with the rheological parameters being modified progressively, but not monotonously, with increasing EPS content. Numerical modeling of debris flows demonstrated that the run-out distance markedly decreases if even 0.1 wt% of EPS is added. The addition of EPS can also enhance the resistivity of sediment to fluidization triggered by cyclic loading, by means of formation of an EPS network that binds sediment particles. These findings suggest that the presence of EPS in natural environments reduces the likelihood of submarine geohazards.


Author(s):  
Michael Greaves ◽  
Mana Mende ◽  
Jiacheng Wang ◽  
Wenji Yang ◽  
Suelen Barg

AbstractAmong 2D materials, MXenes (especially their most studied member, titanium carbide) present a unique opportunity for application via colloidal processing, as they are electrically conductive and chemically active, whilst still being easily dispersed in water. And since the first systematic study of colloidal MXene rheology was published in 2018 (Rheological Characteristics of 2D Titanium Carbide (MXene) Dispersions: A Guide for Processing MXenes by Akuzum, et al.), numerous works have presented small amounts of rheological data which together contribute to a deeper understanding of the topic. This work reviews the published rheological data on all MXene-containing formulations, including liquid crystals, mixtures and non-aqueous colloids, which have been used in processes such as stamping, patterning, 2D and 3D printing. An empirical model of aqueous titanium carbide viscosity has been developed, and recommendations are made to help researchers more effectively present their data for future rheological analysis. Graphic abstract


2019 ◽  
Vol 33 (05) ◽  
pp. 1950014 ◽  
Author(s):  
A. Bindu Madhavi ◽  
S. Sreehari Sastry

Rheological properties of Cholesteryl n-valerate, Cholesteryl decanoate and Cholesteryl myristate which are esters of cholesterol have been studied. Phase transition temperatures and rheological parameters such as viscosity, elastic modulus G[Formula: see text], loss modulus G[Formula: see text] as functions of temperature, shear rate and time are investigated. In frequency sweep test, a higher transition crossover region has occurred for Cholesteryl myristate, whereas for Cholesteryl n-valerate a frequency-independent plateau prevailed for both the moduli. The occurrence of blue phase in Cholesteryl decanoate during temperature sweep measurements is an indication for the rheological support. The results for steady state have informed that cholesteric esters are having non-Newtonian flow behavior in their respective cholesteric phases. The power-law model has explained well the shear rate dependence of shear stress. A few practical applications of these esters as lubricant additives are discussed, too.


Author(s):  
Se-Ra Hong ◽  
Dong-Soo Sun ◽  
Whachun Yoo ◽  
Byoungseung Yoo

Gum-based food thickeners are widely used to care for patients with dysphagia in Korea. In this study, the flow properties of commercially available gum-based food thickeners marketed in Korea were determined as a function of temperature. The flow properties of thickeners were determined based on the rheological parameters of the power law and Casson models. Changes in shear stress with the rate of shear (1-100 s-1) at different temperatures (5, 20, 35, and 50 oC) were independent of the type of thickener. All thickeners had high shear-thinning behavior (n=0.08-0.18) with yield stress at the different temperatures tested. In general, apparent viscosity (na,50) values progressively decreased with an increase in temperature. In addition, the consistency index (K) and Casson yield stress (σoc) values did not change much upon an increase in temperature from 5 to 35 oC, except for sample B. In the temperature range of 5-50 oC, the thickeners followed an Arrhenius temperature relationship with a high determination coefficient (R2=0.93-0.97): activation energies (Ea) for the flow of thickeners were in the range of 2.44 - 10.7 kJ/mol. Rheological parameters demonstrated considerable differences in flow behavior between the different gum-based food thickeners, indicating that their flow properties are related to the type of thickener and the flow properties of gum.


The Analyst ◽  
2014 ◽  
Vol 139 (6) ◽  
pp. 1303-1326 ◽  
Author(s):  
Valentin Romanov ◽  
S. Nikki Davidoff ◽  
Adam R. Miles ◽  
David W. Grainger ◽  
Bruce K. Gale ◽  
...  

Of the diverse analytical tools used in proteomics, protein microarrays possess the greatest potential for providing fundamental information on protein, ligand, analyte, receptor, and antibody affinity-based interactions, binding partners and high-throughput analysis.


Sign in / Sign up

Export Citation Format

Share Document