Metallo-regulation of the bimolecular triplex formation of a peptide nucleic acid

2013 ◽  
Vol 42 (45) ◽  
pp. 16006 ◽  
Author(s):  
Hiroshi Shimada ◽  
Toshihiko Sakurai ◽  
Yusuke Kitamura ◽  
Hirotaka Matsuura ◽  
Toshihiro Ihara
2005 ◽  
Vol 83 (10) ◽  
pp. 1731-1740 ◽  
Author(s):  
Robert HE Hudson ◽  
Filip Wojciechowski

We have investigated the incorporation of C6 derivatives of uracil into polypyrimidine peptide nucleic acid oligomers. Starting with uracil-6-carboxylic acid (orotic acid), a peptide nucleic acid monomer compatible with Fmoc-based synthesis was prepared. This monomer then served as a convertible nucleobase whereupon treatment of the resin-bound methyl orotate containing hexamers with hydroxide or amines cleanly converted the ester to an orotic acid or orotamide-containing peptide nucleic acid. Peptide nucleic acid hexamers containing the C6-modified nucleobase hybridized to both poly(riboadenylic acid) and poly(deoxyriboadenylic acid) via triplex formation. Complexes formed with poly(riboadenylic acid) were more stable than those formed with poly(dexoyriboadenylic acid), as measured by temperature-dependent UV spectroscopy. However, both of these complexes were destabilized relative to the complexes formed by an unmodified peptide nucleic acid oligomers. Internal or doubly substituted hexamers are destabilized more strongly than a terminally substituted one, and the type of substitution (carboxamide, ester, carboxylic acid) affects the overall triplex stability. These results clearly show that incorporation of a C6-substituted uracil into polypyrimidine PNA is detrimental to triplex formation. We have also extended this chemistry to incorporate uracil-5-methylcarboxylate into a peptide nucleic acid hexamer. After on-resin conversion of the C5 ester to the 3-(N,N-dimethylamino)propylamide, significant stabilization of the triplex formed with poly(riboadenylic acid) was observed, which illustrates the compatibility of C5 substitution with peptide nucleic acid directed triple helix formation. Key words: peptide nucleic acid, triple helix, orotic acid, orotamide, PNA.


2018 ◽  
Vol 16 (7) ◽  
pp. 1178-1187 ◽  
Author(s):  
Takaya Sato ◽  
Naonari Sakamoto ◽  
Seiichi Nishizawa

We revealed an association mechanism for PNA–dsRNA triplex formation based on a set of kinetic and thermodynamic data.


2021 ◽  
Vol 23 (1) ◽  
pp. 219-228
Author(s):  
Nabanita Saikia ◽  
Mohamed Taha ◽  
Ravindra Pandey

The rational design of self-assembled nanobio-molecular hybrids of peptide nucleic acids with single-wall nanotubes rely on understanding how biomolecules recognize and mediate intermolecular interactions with the nanomaterial's surface.


Author(s):  
Bichismita Sahu ◽  
Santosh Kumar Behera ◽  
Rudradip Das ◽  
Tanay Dalvi ◽  
Arnab Chowdhury ◽  
...  

Introduction: The outburst of the novel coronavirus COVID-19, at the end of December 2019 has turned itself into a pandemic taking a heavy toll on human lives. The causal agent being SARS-CoV-2, a member of the long-known Coronaviridae family, is a positive sense single-stranded enveloped virus and quite closely related to SARS-CoV. It has become the need of the hour to understand the pathophysiology of this disease, so that drugs, vaccines, treatment regimens and plausible therapeutic agents can be produced. Methods: In this regard, recent studies uncovered the fact that the viral genome of SARS-CoV-2 encodes nonstructural proteins like RNA dependent RNA polymerase (RdRp) which is an important tool for its transcription and replication process. A large number of nucleic acid based anti-viral drugs are being repurposed for treating COVID-19 targeting RdRp. Few of them are in the advanced stage of clinical trials including Remdesivir. While performing close investigation of the large set of nucleic acid based drugs, we were surprised to find that the synthetic nucleic acid backbone is explored very little or rare. Results: We have designed scaffolds derived from peptide nucleic acid (PNA) and subjected them for in-silico screening systematically. These designed molecules have demonstrated excellent binding towards RdRp. Compound 12 was found to possess similar binding affinity as Remdesivir with comparable pharmacokinetics. However, the in-silico toxicity prediction indicates compound 12 may be a superior molecule which can be explored further due to its excellent safety-profile with LD50 (12,000mg/kg) as opposed to Remdesivir (LD50 =1000mg/kg). Conclusion: Compound 12 falls in the safe category of class 6. Synthetic feasibility, equipotent binding and very low toxicity of this peptide nucleic acid derived compounds can serve as a leading scaffold to design, synthesize and evaluate many of similar compounds for the treatment of COVID-19.


Sign in / Sign up

Export Citation Format

Share Document