Corrosion and wear resistance of 32CrMoV13 steel nitrided by plasma

RSC Advances ◽  
2014 ◽  
Vol 4 (95) ◽  
pp. 52951-52958 ◽  
Author(s):  
Okba Belahssen ◽  
Abdelouahed Chala ◽  
Hachemi Ben Temam ◽  
Said Benramache

This paper presents corrosion and wear behavior of the plasma-nitrided 32CrMoV13 steel.

Coatings ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 249
Author(s):  
Wanying Liu ◽  
Yi Pu ◽  
Hongcheng Liao ◽  
Yuanhua Lin ◽  
Wanying He

The effect of added graphene concentration on the microstructure, phase composition, corrosion- and wear- resistance of plasma electrolyte oxidation (PEO) coatings formed on D16T aluminum alloy in silicate electrolyte with different concentrations of graphene were investigated. The results show that the morphologies of the coatings with graphene were obviously different ascribed to the mode of graphene incorporated into the coating. The coatings consisted of mainly α-Al2O3, γ-Al2O3, and Al, which were divided into an outer porous layer and a dense inner layer. The thickness of the coatings increased non-linearly with graphene concentration. The corrosion resistance of the coatings with graphene was significantly improved. The wear resistance of the coatings was also greatly improved apart from the coating with 3 g/L graphene. The coating produced in the electrolyte with 2 g/L graphene exhibited the optimal comprehensive properties because graphene successfully incorporated into the coating via the pores and spread on the surface of the coating.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7379
Author(s):  
Hao Yin ◽  
Jian Liang ◽  
Xiaoyong Ren ◽  
Jie Zhao ◽  
Xin He ◽  
...  

Coating on the surface is one of the main ways to improve the corrosion resistance and wear resistance of materials. In this work, the corrosion, erosion, and wear resistance of WC–10Co4Cr coating and 27CrMoV substrate were compared by simulating the actual working conditions of the drill pipe. The simulation results show that the most serious corrosion occurred at the pipe body and the dominating erosion arose at the pipe joint closing to the inlet of the flow field. WC–10Co4Cr coating has excellent protection to 27CrMoV substrate, resulting in a 400 mV increase in corrosion potential, a two-orders-of-magnitude decrease in the corrosion current, and four times the improvement of the impedance value. The erosion resistance of the WC–10Co4Cr coating increased to more than 30% higher than that of the 27CrMoV substrate. The friction coefficient of the WC–10Co4Cr coating was much lower than that of the 27CrMoV substrate, and the wear resistance of the coating was higher than that of the substrate.


2011 ◽  
Vol 1 (3) ◽  
Author(s):  
Sharma Ankita ◽  
Ajay Singh

AbstractThis article reports on the corrosion and wear resistance of Ni-P and Ni-P-PTFE nanocomposite coatings deposited on mild steel substrates using the electroless plating technique. The coatings were characterized by scanning electron microscopy (SEM), energy dispersive analysis of X-Ray (EDAX), and X-ray diffractometry (XRD). The coatings were smooth and had thicknesses between 7 and 23 µm. They contained Ni, P, and additionally, F, in the case of the Ni-P-PTFE films. A broadening of the Ni peak in XRD was attributed to the amorphous nature and/or fine grain size of the films. Corrosion resistance was measured using immersion and electrochemical polarization tests in 3.5% NaCl solution whereas wear resistance was determined by the pin-on-disc method. Both Ni-P and Ni-P-PTFE coatings exhibited significant improvement in corrosion (in salty media) and wear behavior. Furthermore, the addition of PTFE in the coatings showed improvement in their corrosion resistance as well as a reduction in friction coefficient. Our testing revealed that the coatings’ wore out following the “adhesive type” mechanism.


2020 ◽  
Vol 1002 ◽  
pp. 33-43
Author(s):  
Nawal Mohammed Dawood ◽  
Nabaa S. Radhi ◽  
Zainab S. Al-Khafaji

This research signifies an attempt to apply composite coating by co-deposition coating and assessing, enhancement the Nickel coatings features, by adding the particles of silicon-carbide to solution of electrodeposited. Stainless steel specimens have been subject to electroplating coating utilizing Nickel and nanosilicon carbide particles (70-100 nm) with various amounts (16, 24, 32 and 40) g/L. After coating, the specimens were tested by SEM, AFM, impeded in a solution with 3.5 percent NaCl to investigate the corrosion performance. Then testing the microhardness, and wear resistance. Results obtained from this work showed a great reduction in corrosion currents caused by adding of inert nanoparticles. These enhancements had been detected on all conducted tests for corrosion and wear.


Alloy Digest ◽  
1998 ◽  
Vol 47 (4) ◽  

Abstract Deltalloy 4032 has good machinability and drilling characteristics when using single-point or multispindle screw machines and an excellent surface finish using polycrystalline or carbide tooling. The alloy demonstrates superior wear resistance and may eliminate the need for hard coat anodizing. Deltalloy 4032 is characterized by high strength and a low coefficient of thermal expansion. This datasheet provides information on composition, physical properties, and tensile properties. It also includes information on corrosion and wear resistance as well as machining and surface treatment. Filing Code: AL-347. Producer or source: ALCOA Wire, Rod & Bar Division.


Alloy Digest ◽  
1996 ◽  
Vol 45 (10) ◽  

Abstract Tribaloy alloy T-900 is a cobalt-base alloy derived from an alloy family originally developed by DuPont. Excessive amounts of molybdenum and silicon induce the formatin during solidification of a hard and corrosion-resistant intermetallic coumpound, known as Laves phase. This alloy had improved crack resistance and a lower preheat temperature compared with Tribaloy T-800 (Alloy Digest Co-99, September 1996). This datasheet provides information on composition, microstructure, and hardness. It also includes information on corrosion and wear resistance. Filing Code: CO-100. Producer or source: Stoody Deloro Stellite Inc.


Alloy Digest ◽  
1986 ◽  
Vol 35 (11) ◽  

Abstract ENPLATE NI-423 is a nickel-phosphorus alloy deposited by chemical reduction without electric current. It is deposited by a stable, relatively high-speed functional electroless nickel process that produces a low-stress coating with good ductility and excellent resistance to corrosion. Its many uses include equipment for chemicals and food, aerospace components, molds and electronic devices. This datasheet provides information on composition, physical properties, and hardness. It also includes information on corrosion and wear resistance as well as heat treating, machining, joining, and surface treatment. Filing Code: Ni-343. Producer or source: Enthone Inc..


Alloy Digest ◽  
1999 ◽  
Vol 48 (1) ◽  

Abstract Olin C197 is a second-generation high performance alloy developed by Olin Brass. It has a strength and bend formability similar to C194 (see Alloy Digest Cu-360, September 1978), but with 25% higher electrical and thermal conductivity. High conductivity allows C197 to replace brasses and bronzes in applications where high current-carrying capability is required. Also, the strength of C197 provides higher contact forces when substituted for many lower strength coppers. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion and wear resistance as well as forming and joining. Filing Code: CU-627. Producer or source: Olin Brass.


Alloy Digest ◽  
1993 ◽  
Vol 42 (3) ◽  

Abstract WAUKESHA METAL NO. 23 is a nickel-base casting alloy having high resistance to corrosion, good machinability, and freedom from any tendency to seize or gall. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance, corrosion and wear resistance as well as machining and joining. Filing Code: Ni-49. Producer or source: Waukesha Foundry Company. Originally published January 1959, revised March 1993.


Alloy Digest ◽  
2009 ◽  
Vol 58 (9) ◽  

Abstract Carpenter ACUBE 100 Alloy is cobalt-base and exhibits corrosion resistance and wear resistance. The alloy was designed as direct replacement of beryllium copper alloys. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion and wear resistance as well as forming, heat treating, and machining. Filing Code: CO-117. Producer or source: Carpenter Specialty Alloys.


Sign in / Sign up

Export Citation Format

Share Document