Supramolecular functionalized polybenzoxazines from azobenzene carboxylic acid/azobenzene pyridine complexes: synthesis, surface properties, and specific interactions

RSC Advances ◽  
2015 ◽  
Vol 5 (17) ◽  
pp. 12763-12772 ◽  
Author(s):  
Mohamed Gamal Mohamed ◽  
Chi-Hui Hsiao ◽  
Kuo-Chih Hsu ◽  
Fang-Hsien Lu ◽  
His-Kang Shih ◽  
...  

Supramolecular complex of azobenzene carboxylic acid/pyridine functionalized benzoxazine system featured significantly lower curing temperatures and maintain high water contact angles.

Coatings ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 397 ◽  
Author(s):  
Jinguang Wei ◽  
Qiuqin Lin ◽  
Yahui Zhang ◽  
Wenji Yu ◽  
Chung-Yun Hse ◽  
...  

Coating quality for scrimber products against exterior conditions is largely dependent on the surface properties. The wettability, morphology, and chemical composition of pine scrimber surfaces were investigated to better understand the surface properties. The scrimber was found to be a hydrophilic material because the water contact angles were less than 90°. The panels with a density of 1.20 g/cm3 had the largest angle change rate (k = 0.212). As the panel density increased, the instantaneous contact angle of each test liquid (i.e., water, formamide, and diiodomethane) on the panels decreased, and so did surface free energy. Panels with higher density showed lower surface roughness. Surface roughness across the wood grain was greater than that along the grain. SEM observations showed the high-density panels had a smoother surface with fewer irregular grooves in comparison with the low-density panels. X-ray photoelectron spectroscopy (XPS) analysis indicated that more unoxygenated groups appeared on the surface of high-density panels.


1995 ◽  
Vol 383 ◽  
Author(s):  
M. R. Houston ◽  
R. T. Howe ◽  
K Komvopoulos ◽  
R. Maboudian

ABSTRACTThe surface properties of diamond-like carbon (DLC) films deposited by a vacuum arc technique on smooth silicon wafers are presented with specific emphasis given to stiction reduction in microelectromechanical systems (MEMS). The low deposition temperatures afforded by the vacuum arc technique should allow for easy integration of the DLC films into the current fabrication process of typical surface micromachines by means of a standard lift-off processing technique. Using X-ray photoelectron spectroscopy (XPS), contact angle analysis, and atomic force microscopy (AFM), the surface chemistry, microroughness, hydrophobicity, and adhesion forces of DLC-coated Si(100) surfaces were measured and correlated to the measured water contact angles. DLC films were found to be extremely smooth and possess a water contact angle of 87°, which roughly corresponds to a surface energy of 22 mJ/m2. It is shown that the pull-off forces measured by AFM correlate well with the predicted capillary forces. Pull-off forces are reduced on DLC surfaces by about a factor of five compared to 10 nN pull-off forces measured on the RCA-cleaned silicon surfaces. In the absence of meniscus forces, the overall adhesion force is expected to decrease by over an order of magnitude to the van der Waals attractive force present between two DLC-coated surfaces- To further improve the surface properties of DLC, films were exposed to a fluorine plasma which increased the contact angle to 99° and lowered the pull-off force by approximately 20% over that obtained with as-deposited DLC. The significance of these results is discussed with respect to stiction reduction in micromachines.


2016 ◽  
Vol 7 (23) ◽  
pp. 3913-3922 ◽  
Author(s):  
Fangfang Yu ◽  
Liwei Cao ◽  
Zhaohui Meng ◽  
Naibo Lin ◽  
Xiang Yang Liu

Fluorinated acrylate and siloxane waterborne polyurethanes with crosslinked structure exhibit low water absorption, high water contact angles, and high mechanical/thermal properties.


2002 ◽  
Vol 68 (8) ◽  
pp. 3855-3858 ◽  
Author(s):  
Karola Waar ◽  
Henny C. van der Mei ◽  
Hermie J. M. Harmsen ◽  
John E. Degener ◽  
Henk J. Busscher

ABSTRACT The aim of this study is to determine whether growth in the presence of bile influences the surface properties and adhesion to hydrophobic bile drain materials of Enterococcus faecalis strains expressing aggregation substance (Agg) or enterococcal surface protein (Esp), two surface proteins that are associated with infections. After growth in the presence of bile, the strains were generally more hydrophobic by water contact angles and the zeta potentials were more negative than when the strains were grown in the absence of bile. Nitrogen was found in lower surface concentrations upon growth in the presence of bile, whereas higher surface concentrations of oxygen were measured by X-ray photoelectron spectroscopy. Moreover, an up to twofold-higher number of bacteria adhered after growth in bile for E. faecalis not expressing Agg or Esp and E. faecalis with Esp on its surface. E. faecalis expressing Agg did not adhere in higher numbers after growth in bile, possibly because they mainly adhere through positive cooperativity and less through direct interactions with a substratum surface. Since adhesion of bacteria is the first step in biomaterial-centered infection, it can be concluded that growth in bile increases the virulence of E. faecalis.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 533a-533 ◽  
Author(s):  
L. Cisneros-Zevallos ◽  
M. E. Saltveit ◽  
J. M Krochta

Nettability is an important factor to be considered in postharvest treatments such as washing, aqueous dippings, coatings, etc. Pome fruits (ten apple and four pear cultivars) and stone fruits (nectarine and plums) were evaluated for wetting behavior and surface tension at room temperature. Nettability was assessed by measuring contact angles of water. Surface tension was calculated by measuring contact angles of methylene iodide and water or by a series of pure surfactants using Zisman's method. Wetting behavior on apple fruits depended on cultivar, with water contact angles ranging from 75° to 131°. For pear fruits, wetting also depended on cultivar. Calculated surface tensions of pear fruits were in general higher than most apple cultivars tested. In stone fruits, plums presented a high water-repellency with a contact angle of 137°. The wetting of fruit surfaces seems to be governed by the nature of the chemical groups exposed on the surface of the cuticle and also by the surface roughness, as evidenced by tire high values of some contact angles.


1955 ◽  
Vol 32 (3) ◽  
pp. 591-617 ◽  
Author(s):  
M. W. HOLDGATE

1. The water contact angles of insects show a wide range of variation, which is broadly correlated with surface roughness and with habitat. 2. The contact angles of species inhabiting stored products or carrion are greatly modified by contamination. This produces large variations between apparently similar individuals. 3. In terrestrial insects surface roughness increases the contact angles to very large apparent values. Detailed analyses of its effect have been made in the pupa of Tenebrio molitor and the adult Calliphora erythrocephala. In some aquatic insects surface roughness leads to a reduction in the contact angles; this has been studied in the nymph of Anax imperator. 4. Prolonged immersion in water causes a lowering of the contact angles of all the insects examined, and the low angles of many aquatic species may therefore be the direct effect of their environment. In some aquatic species there is evidence of the active maintenance of a large contact angle during life. 5. Changes in contact angle accompany processes of cuticle secretion and will occur at any moult if changes in roughness or habitat take place. 6. The observed variations of surface properties can be explained without assuming any variation in the chemical composition of the cuticle surface. Wetting properties are of little value as indicators of cuticle surface composition. 7. The biological aspects of insect surface properties are briefly discussed.


Holzforschung ◽  
2016 ◽  
Vol 70 (1) ◽  
pp. 55-61 ◽  
Author(s):  
William P. Lekobou ◽  
Karl R. Englund ◽  
Marie-Pierre Laborie ◽  
Patrick D. Pedrow

AbstractThe paper aims at the investigation of atmospheric pressure weakly ionized plasmas with argon and acetylene to deposit plasma-polymerized coatings on wood veneers (birch, maple), cellulose paper, and pine wood flour to modify their surface properties, in particular their topography and wettability. The treatment was performed in a reactor containing an array of high-voltage needles and a grounded metallic mesh as electrodes. The deposition occurred in the discharge downstream of the plasma region. The plasma-polymerized acetylene deposits form spherical nodules on the surface of the substrates and change their wettability from hydrophilic to hydrophobic. The water contact angles of the veneer were determined with a goniometer. The capillary rise was combined with the Washburn equation to assess the change in hydrophilicity of the plasma-treated wood flour.


2008 ◽  
Vol 74 (5) ◽  
pp. 1428-1435 ◽  
Author(s):  
Mariko Gyo ◽  
Toru Nikaido ◽  
Koichi Okada ◽  
Junichi Yamauchi ◽  
Junji Tagami ◽  
...  

ABSTRACT Experimental resin composites with incorporated polytetrafluoroethylene (PTFE) particles were developed, which theoretically could improve the surface properties of the materials, including the inhibition of bacterial adherence. To assess the surface properties in relation to biofilm formation and detachment, 23.1% (wt/wt) linear PTFE particles (FL-30) and cross-linked PTFE particles (FC-30) were incorporated into pure resin composites. Pure PTFE plates and pure resin composites without PTFE (F-0) were used as control specimens. Sucrose-dependent Streptococcus mutans biofilms were formed on the specimen blocks inside an oral biofilm reactor for various time periods and analyzed with or without application of driving forces. In addition, water contact angles and surface roughness were measured. The water contact angles of FL-30 (61.2°) and FC-30 (65.8°) were larger than that of F-0 (48.5°). The largest contact angle (107°) was detected on pure PTFE plates. However, the surfaces of FL-30, FC-30, and pure PTFE plates were rougher than that of F-0. Although the surface properties of the materials differed in terms of contact angles and roughness, these factors seemed not to affect biofilm formation on the surfaces within 5 h. Pure PTFE plates harbored almost the same amounts of biofilm as F-0. However, when a very strong driving force was applied, it was clear that there were significantly smaller amounts of biofilms retained on pure PTFE plates, which showed contact angles much higher than those of the other materials. Hydrophobicity of the resin composite was improved by incorporation of PTFE fillers. However, surface resistance against biofilm formation was not improved.


2008 ◽  
Vol 75 (4) ◽  
pp. 1185-1191 ◽  
Author(s):  
Karen Shapiro ◽  
John Largier ◽  
Jonna A. K. Mazet ◽  
William Bernt ◽  
John R. Ell ◽  
...  

ABSTRACT The physical properties that govern the waterborne transmission of Toxoplasma gondii oocysts from land to sea were evaluated and compared to the properties of carboxylated microspheres, which could serve as surrogates for T. gondii oocysts in transport and water treatment studies. The electrophoretic mobilities of T. gondii oocysts, lightly carboxylated Dragon Green microspheres, and heavily carboxylated Glacial Blue microspheres were determined in ultrapure water, artificial freshwater with and without dissolved organic carbon, artificial estuarine water, and artificial seawater. The surface wettabilities of oocysts and microspheres were determined using a water contact angle approach. Toxoplasma gondii oocysts and microspheres were negatively charged in freshwater solutions, but their charges were neutralized in estuarine water and seawater. Oocysts, Glacial Blue microspheres, and unwashed Dragon Green microspheres had low contact angles, indicating that they were hydrophilic; however, once washed, Dragon Green microspheres became markedly hydrophobic. The hydrophilic nature and negative charge of T. gondii oocysts in freshwater could facilitate widespread contamination of waterways. The loss of charge observed in saline waters may lead to flocculation and subsequent accumulation of T. gondii oocysts in locations where freshwater and marine water mix, indicating a high risk of exposure for humans and wildlife in estuarine habitats with this zoonotic pathogen. While microspheres did not have surface properties identical to those of T. gondii, similar properties shared between each microsphere type and oocysts suggest that their joint application in transport and fate studies could provide a range of transport potentials in which oocysts are likely to behave.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yasuo Norikane ◽  
Masaru Hayashino ◽  
Mio Ohnuma ◽  
Koji Abe ◽  
Yoshihiro Kikkawa ◽  
...  

Photo-induced crawling motion of a crystal of 3,3′-dimethylazobenzene (DMAB) on a glass substrate having different surface properties was studied. When exposed to UV and visible lights simultaneously from different directions, crystals crawl continuously on a glass surface. On a hydrophilic surface, the crystals crawled faster than those on other surfaces but crystals showed spreading while they moved. On hydrophobic surfaces, on the other hand, the crystals showed little shape change and slower crawling motion. The contact angles of the liquid phase of DMAB on surface-modified glass substrates showed positive correlation with the water contact angles. The interaction of melted azobenzene with glass surfaces plays an important role for the crawling motion. We proposed models to explain the asymmetric condition that leads to the directional motion. Specifically by considering the penetration length of UV and visible light sources, it was successfully shown that the depth of light penetration is different at the position of a crystal. This creates a nonequilibrium condition where melting and crystallization are predominant in the same crystal.


Sign in / Sign up

Export Citation Format

Share Document