The local electric field favours more than exposed nitrogen atoms on CO2 capture: a case study on the rht-type MOF platform

2015 ◽  
Vol 51 (47) ◽  
pp. 9636-9639 ◽  
Author(s):  
Wen-Yang Gao ◽  
Tony Pham ◽  
Katherine A. Forrest ◽  
Brian Space ◽  
Lukasz Wojtas ◽  
...  

Investigations of CO2 adsorption in two rht-MOFs indicated that the local electric field favours more than the exposed nitrogen atoms for the interactions with CO2 molecules.

2018 ◽  
Author(s):  
Marti Lopez ◽  
Luke Broderick ◽  
John J Carey ◽  
Francesc Vines ◽  
Michael Nolan ◽  
...  

<div>CO2 is one of the main actors in the greenhouse effect and its removal from the atmosphere is becoming an urgent need. Thus, CO2 capture and storage (CCS) and CO2 capture and usage (CCU) technologies are intensively investigated as technologies to decrease the concentration</div><div>of atmospheric CO2. Both CCS and CCU require appropriate materials to adsorb/release and adsorb/activate CO2, respectively. Recently, it has been theoretically and experimentally shown that transition metal carbides (TMC) are able to capture, store, and activate CO2. To further improve the adsorption capacity of these materials, a deep understanding of the atomic level processes involved is essential. In the present work, we theoretically investigate the possible effects of surface metal doping of these TMCs by taking TiC as a textbook case and Cr, Hf, Mo, Nb, Ta, V, W, and Zr as dopants. Using periodic slab models with large</div><div>supercells and state-of-the-art density functional theory based calculations we show that CO2 adsorption is enhanced by doping with metals down a group but worsened along the d series. Adsorption sites, dispersion and coverage appear to play a minor, secondary constant effect. The dopant-induced adsorption enhancement is highly biased by the charge rearrangement at the surface. In all cases, CO2 activation is found but doping can shift the desorption temperature by up to 135 K.</div>


Author(s):  
Yun Zhao ◽  
Xiaoqiang Feng ◽  
Menghan Zhao ◽  
Xiaohu Zheng ◽  
Zhiduo Liu ◽  
...  

Employing C3N QD-integrated single-crystal graphene, photodetectors exhibited a distinct photocurrent response at 1550 nm. The photocurrent map revealed that the fast response derive from C3N QDs that enhanced the local electric field near graphene.


2015 ◽  
Vol 17 (5) ◽  
pp. 3426-3434 ◽  
Author(s):  
Qing-Lu Liu ◽  
Zong-Yan Zhao ◽  
Qing-Ju Liu

S + NM co-doping could induce a stronger local electric field and eliminate the deep impurity energy bands of S mono-doped TiO2.


2021 ◽  
Author(s):  
Zhitian Shi ◽  
Konstantins Jefimovs ◽  
Antonino La Magna ◽  
Marco Stampanoni ◽  
Lucia Romano

Sign in / Sign up

Export Citation Format

Share Document