Enhanced corrosion performance of Zn coating by incorporating graphene oxide electrodeposited from deep eutectic solvent

RSC Advances ◽  
2015 ◽  
Vol 5 (75) ◽  
pp. 60698-60707 ◽  
Author(s):  
Ruiqian Li ◽  
Jun Liang ◽  
Yuanyuan Hou ◽  
Qingwei Chu

The corrosion resistance of Zn–GO is much better than that of pure Zn.

2011 ◽  
Vol 194-196 ◽  
pp. 1253-1256
Author(s):  
Ya Ni Zhang ◽  
Mao Sheng Zheng ◽  
Jie Wu Zhu

The corrosion behavior of CuCr, CuZr and CuCrZr alloys in NaCl solution is reported in this paper. The corrosion performance has been evaluated in NaCl solution atmosphere. The results show the corrosion resistance of pure copper decrease with the addition of the alloying elements initially. However, in the later exposure stages, the corrosion resistance of CuZr and CuCrZr alloy deteriorates significantly while the corrosion resistance of CuCr alloy is slightly better than that of pure copper. In addition, the results of the electrochemical experiments indicate that the different behavior for the element Cr and Zr in the base material and corrosion scales lead to the change of the corrosion resistance.


Alloy Digest ◽  
2003 ◽  
Vol 52 (9) ◽  

Abstract Crucible CPM S30V is a martensitic stainless steel designed with a combination of toughness, wear resistance, and corrosion resistance equal to or better than 440C. This datasheet provides information on composition, physical properties, microstructure, hardness, and elasticity as well as fracture toughness. It also includes information on corrosion and wear resistance as well as heat treating and machining. Filing Code: SS-891. Producer or source: Crucible Service Centers.


Alloy Digest ◽  
1994 ◽  
Vol 43 (5) ◽  

Abstract URANUS 52N is a nitrogen-alloyed duplex stainless steel improved in stress-corrosion cracking resistance and with pitting and crevice corrosion resistance better than AISI Type 317L. Applications include handling phosphoric acid contaminated with chlorides and in flue gas desulfurization scrubbers. This datasheet provides information on composition, physical properties, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-566. Producer or source: Creusot-Marrel.


Alloy Digest ◽  
1993 ◽  
Vol 42 (11) ◽  

Abstract ZERON 100 is a super duplex stainless steel which is manufactured to give a guaranteed corrosion performance by using an equation to control the chemistry in those elements which will determine the corrosion resistance of the material. Major usages in seawater applications, particularly offshore oil gathering systems. This datasheet provides information on composition, hardness, and tensile properties as well as fracture toughness. It also includes information on low and high temperature performance as well as heat treating, machining, and joining. Filing Code: SS-555. Producer or source: Weir Material Services Ltd.


Alloy Digest ◽  
2008 ◽  
Vol 57 (12) ◽  

Abstract Ferrium S53 was developed for use as a structural corrosion resistant steel for aircraft landing gear. S53 has a corrosion resistance equivalent to 440C, strength equivalent to or better than 300M (AMS 6257A) and SAE 4340 (see Mechanical Properties), optimum microstructure features for maximum fatigue resistance, and a surface hardenability equal to or greater than 67 HRC for wear and fatigue. This datasheet is an update to Alloy Digest SS-942 and SS-1003. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as heat treating and machining. Filing Code: SA-589. Producer or source: QuesTek Innovations, LLC.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 89
Author(s):  
Wei Yuan ◽  
Qian Hu ◽  
Jiao Zhang ◽  
Feng Huang ◽  
Jing Liu

This study modified graphene oxide (GO) with hydrophilic octadecylamine (ODA) via covalent bonding to improve its dispersion in silicone-modified epoxy resin (SMER) coatings. The structural and physical properties of ODA-GO were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and contact angle tests. The ODA-GO composite materials were added to SMER coatings by physical mixing. FE-SEM, water absorption, and contact angle tests were used to evaluate the physical properties of the ODA-GO/SMER coatings, while salt spray, electrochemical impedance spectroscopy (EIS), and scanning Kelvin probe (SKP) methods were used to test the anticorrosive performance of ODA-GO/SMER composite coatings on Q235 steel substrates. It was found that ODA was successfully grafted onto the surfaces of GO. The resulting ODA-GO material exhibited good hydrophobicity and dispersion in SMER coatings. The anticorrosive properties of the ODA-GO/SMER coatings were significantly improved due to the increased interfacial adhesion between the nanosheets and SMER, lengthening of the corrosive solution diffusion path, and increased cathodic peeling resistance. The 1 wt.% ODA-GO/SMER coating provided the best corrosion resistance than SMER coatings with other amounts of ODA-GO (including no addition). After immersion in 3.5 wt.% NaCl solution for 28 days, the low-frequency end impedance value of the 1 wt.% ODA-GO/SMER coating remained high, at 6.2 × 108 Ω·cm2.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 929
Author(s):  
Dandan Liang ◽  
Jo-Chi Tseng ◽  
Xiaodi Liu ◽  
Yuanfei Cai ◽  
Gang Xu ◽  
...  

This study investigated the structural heterogeneity, mechanical property, electrochemical behavior, and passive film characteristics of Fe–Cr–Mo–W–C–B–Y metallic glasses (MGs), which were modified through annealing at different temperatures. Results showed that annealing MGs below the glass transition temperature enhanced corrosion resistance in HCl solution owing to a highly protective passive film formed, originating from the decreased free volume and the shrinkage of the first coordination shell, which was found by pair distribution function analysis. In contrast, the enlarged first coordination shell and nanoscale crystal-like clusters were identified for MGs annealed in the supercooled liquid region, which led to a destabilized passive film and thereby deteriorated corrosion resistance. This finding reveals the crucial role of structural heterogeneity in tuning the corrosion performance of MGs.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4045
Author(s):  
Rafał Mech ◽  
Jolanta Gąsiorek ◽  
Amadeusz Łaszcz ◽  
Bartosz Babiarczuk

The paper presents a comparison of the results of the corrosion resistance for three Fe-B-Co-Si-based newly developed alloys with the addition of Nb and V. The corrosion performance differences and microstructure variations were systematically studied using scanning electron microscope, electric corrosion equipment, X-ray diffractometer, and differential calorimeter. It has been shown that each alloying addition increased the corrosion resistance. The highest corrosion resistance obtained by potentiodynamic polarization was found for the alloy with both Nb and V addons (Fe57Co10B20Si5Nb4V4) and lowest in the case of the basic four-element Fe62Co15B14Si9 material. This shows that the proper choice of additions is of significant influence on the final performance of the alloy and allows tailoring of the material for specific applications.


Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 101
Author(s):  
Kaijin Huang ◽  
Wei Li ◽  
Kai Pan ◽  
Xin Lin ◽  
Aihua Wang

In order to improve the seawater corrosion resistance of Inconel 718 superalloy, a La2Zr2O7/NiCoCrAlY thermal barrier coating corrosion resistant to 3.5 wt.% NaCl aqueous solution was prepared by laser cladding on Inconel 718 superalloy. X-ray diffraction (XRD), Scanning Electron Microscope (SEM), and electrochemical techniques were used to study the microstructure and the corrosion performance of the coating in 3.5 wt.% NaCl solution. The results show that the thermal barrier coating is mainly composed of primary La2Zr2O7 phase and γ + laves/δ phase eutectic structure. The corrosion potential and corrosion current of the coating in 3.5 wt.% NaCl solution are higher and lower than that of the Inconel 718 substrate, respectively, indicating that the corrosion performance of the coating is better than that of the Inconel 718 substrate. The presence of La2Zr2O7 phase in the thermal barrier coating is the main reason for its corrosion resistance to 3.5 wt.% NaCl solution.


Sign in / Sign up

Export Citation Format

Share Document