Influence of interface properties on charge density, band edge shifts and kinetics of the photoelectrochemical process in p-type NiO photocathodes

RSC Advances ◽  
2015 ◽  
Vol 5 (88) ◽  
pp. 71778-71784 ◽  
Author(s):  
Qian Liu ◽  
Lifang Wei ◽  
Shuai Yuan ◽  
Xin Ren ◽  
Yin Zhao ◽  
...  

The surface structure of NiO is correlated to observed changes in the band energy, energetic distribution of the trap states density, charge interface transfer, charge transport, and as a result the p-type DSSC device performance.

Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 338
Author(s):  
Hak Hyeon Lee ◽  
Dong Su Kim ◽  
Ji Hoon Choi ◽  
Young Been Kim ◽  
Sung Hyeon Jung ◽  
...  

An effective strategy for improving the charge transport efficiency of p-type Cu2O photocathodes is the use of counter n-type semiconductors with a proper band alignment, preferably using Al-doped ZnO (AZO). Atomic layer deposition (ALD)-prepared AZO films show an increase in the built-in potential at the Cu2O/AZO interface as well as an excellent conformal coating with a thin thickness on irregular Cu2O. Considering the thin thickness of the AZO overlayers, it is expected that the composition of the Al and the layer stacking sequence in the ALD process will significantly influence the charge transport behavior and the photoelectrochemical (PEC) performance. We designed various stacking orders of AZO overlayers where the stacking layers consisted of Al2O3 (or Al) and ZnO using the atomically controlled ALD process. Al doping in ZnO results in a wide bandgap and does not degrade the absorption efficiency of Cu2O. The best PEC performance was obtained for the sample with an AZO overlayer containing conductive Al layers in the bottom and top regions. The Cu2O/AZO/TiO2/Pt photoelectrode with this overlayer exhibits an open circuit potential of 0.63 V and maintains a high cathodic photocurrent value of approximately −3.2 mA cm−2 at 0 VRHE for over 100 min.


2009 ◽  
Vol 156-158 ◽  
pp. 145-148 ◽  
Author(s):  
Daniel Kropman ◽  
E. Mellikov ◽  
K. Lott ◽  
Tiit Kärner ◽  
Ivo Heinmaa ◽  
...  

The results of investigation of the point defect generation and interaction with impurities in the Si-SiO2 system during the process of its formation by means of electron paramagnetic resonance (EPR) and nucleous magnetic resonance (NMR) technique are presented. It has been shown that the diference in point defects interaction with hydrogen at the Si-SO2 interface with n- and p-type conductivity are connected with the sign of hydrogen ions incorporation dependence on the Fermi level position in accordance with the proposed model. The interface properties may be improved by laser irradiation.


1979 ◽  
Vol 57 (4) ◽  
pp. 400-403 ◽  
Author(s):  
Anne Le Narvor ◽  
Pierre Saumagne

The ir spectra of mixtures of methyl propionate/water and methyl propionate/Ba2+ in dimethylsulfoxide and in acetonitrile have been recorded in the region of the νCO mode of the ester. Evidence is presented to indicate the presence of different types of complexes; their concentration was determined as a function of the composition of the medium. The spectroscopic results are compared to those from the kinetics of the alkaline hydrolysis in the same conditions. It is demonstrated that the orbital control explains the experimental results better than does the charge density on the carbon of the carbonyl group. [Journal translation]


2016 ◽  
Vol 4 (46) ◽  
pp. 10827-10838 ◽  
Author(s):  
Riccardo Di Pietro ◽  
Tim Erdmann ◽  
Naixiang Wang ◽  
Xuhai Liu ◽  
David Gräfe ◽  
...  

Optimization of hole transport via passivation of trap states.


2002 ◽  
Vol 268 (1) ◽  
pp. 215-220
Author(s):  
Th. Hölbling ◽  
R. Waser

2020 ◽  
Vol 7 (12) ◽  
pp. 200723
Author(s):  
Hai Duong Pham ◽  
Wu-Pei Su ◽  
Thi Dieu Hien Nguyen ◽  
Ngoc Thanh Thuy Tran ◽  
Ming-Fa Lin

The essential properties of monolayer silicene greatly enriched by boron substitutions are thoroughly explored through first-principles calculations. Delicate analyses are conducted on the highly non-uniform Moire superlattices, atom-dominated band structures, charge density distributions and atom- and orbital-decomposed van Hove singularities. The hybridized 2 p z –3 p z and [2s, 2 p x , 2 p y ]–[3s, 3 p x , 3 p y ] bondings, with orthogonal relations, are obtained from the developed theoretical framework. The red-shifted Fermi level and the modified Dirac cones/ π bands/ σ bands are clearly identified under various concentrations and configurations of boron-guest atoms. Our results demonstrate that the charge transfer leads to the non-uniform chemical environment that creates diverse electronic properties.


Sign in / Sign up

Export Citation Format

Share Document