Influence of carbon nanofillers on the curing kinetics of epoxy-amine resin

RSC Advances ◽  
2015 ◽  
Vol 5 (110) ◽  
pp. 90437-90450 ◽  
Author(s):  
L. Vertuccio ◽  
S. Russo ◽  
M. Raimondo ◽  
K. Lafdi ◽  
L. Guadagno

Variation of the activation energy with conversion obtained by “advanced isoconversional method”.

2011 ◽  
Vol 65 (6) ◽  
pp. 717-726 ◽  
Author(s):  
Mladjan Popovic ◽  
Jaroslava Budinski-Simendic ◽  
Mirjana Jovicic ◽  
Joszef Mursics ◽  
Milanka Djiporovic-Momcilovic ◽  
...  

Differential scanning calorimetry (DSC) was used to evaluate the curing kinetics of two commercial urea-formaldehyde (UF) adhesives having different formaldehyde to urea (F/U) ratio of 1.112 (UF1) and 1.086 (UF2). DSC measurements were done in dynamic scanning regime with heating rates of 5, 10, 15 and 20?C?min-1 in order to determine the activation energy for each adhesive. Obtained data were analyzed using isoconversional methods with application of Ozawa-Flynn-Wall and Kissinger-Akahira-Sunose kinetic models. In addition, different catalyst levels were tested at the heating rate of 10?C/min. Results showed that the adhesive with higher F/U ratio achieved higher activation energy, while having lower peak temperature of curing reaction. It was also noticed that the increase of catalyst level influenced the increase of reaction enthalpy of the adhesive with lower F/U ratio.


2014 ◽  
Vol 988 ◽  
pp. 31-35
Author(s):  
Jia Le Song ◽  
Chan Chan Li ◽  
Zhi Mi Zhou ◽  
Chao Qiang Ye ◽  
Wei Guang Li

Curing kinetics of MEP-15/593 system and MEP-15/593/660 system is studied by means of differential scanning calorimetry (DSC). Curing kinetic parameters are evaluated and the relationship between diluent 660 and the curing properties is investigated. The results show that the diluent 660 can not only reduce viscosity and activation energy, but also improve the degree of cure and conversion ratio.


2020 ◽  
Vol 692 ◽  
pp. 178735
Author(s):  
Zhipeng Ran ◽  
Xiaobing Liu ◽  
Xiaolian Jiang ◽  
Yeping Wu ◽  
Hong Liao

2021 ◽  
Vol 55 (2) ◽  
pp. 293-304
Author(s):  
Jing Zhang ◽  
Yi-min Wu ◽  
Xu Ma ◽  
Bao-Yu Huang ◽  
Song Lv ◽  
...  

The isothermal curing kinetics of polymethacrylimide/nano-SiO2 composites were investigated using a dynamic thermomechanical analysis. The relative conversion was defined with the storage modulus. The Avrami model-fitting method, Friedman method and integral method were applied to analyze the curing kinetics. The storage modulus and loss modulus increased appreciably, spanning three orders of magnitude throughout the curing. The frequency correlation of the relative conversion was noticeable at 180 °C because the glass transition took place when the curing degree was not high enough. The Avrami model-fitting analysis gave good fits for the experimental data. The activation energy calculated with the Avrami equation changed from 65.46 kJ/mol to 25.28 kJ/mol at 180–190 °C, while at 190–200 °C, the activation energy changed from 107.14 kJ/mol to 63.82 kJ/mol. The model-free analysis revealed the dependence of the activation energy on the relative conversion. The activation energy increased from 104.3 kJ/mol to 130.6 kJ/mol with the use of the Friedman method when the relative conversion ranged between 0.4–0.8. Similarly, the activation energy calculated with the integral method increased from 71.5 kJ/mol to 103.4 kJ/mol. When the relative conversion exceeded 0.8, the activation energy decreased gradually. The mobility of the reactive groups was hindered and the crosslinking density of the composite was much higher. The curing kinetics became diffusion controlled. The activation energy of the PMI/SiO2 composite was greater than that of PMI, which could be attributed to the hindrance effect caused by nano-SiO2.


2018 ◽  
Vol 5 (10) ◽  
pp. 181282 ◽  
Author(s):  
Liming He ◽  
Wei He ◽  
Zhongliang Ma

We have conducted a novel study of the influence of energy components (RDX, AP and CL-20) on curing kinetics of glycidyl azide polymer (GAP) spherical propellant based on rheological method. The autocatalytic model was used to describe curing kinetics and the parameters were determined by the model-fitting method. It was found that the incorporation of components hinders the cross-linking reaction of GAP spherical propellant. Integral isoconversional method was used on rheological kinetics to investigate the changes of the activation energy and we confirmed that the incorporation of components increased the activation energy. It was also found that such components had no effect on the trend of activation energy curves but shrank the peak value at a = 0.2. Dynamic mechanical analysis (DMA) showed the differences between pure curing system and its components. These findings are potentially helpful to control the curing effectively and optimize the processing schedules. The addition of components decreased α translation temperature which means the reduction in cross-links. The differences in the values of loss factor tan δ and β translation showed that pure curing system has lower resistance for side chain to motion.


2016 ◽  
Vol 636 ◽  
pp. 85-93 ◽  
Author(s):  
James S. Campbell ◽  
John R. Grace ◽  
C. Jim Lim ◽  
David W. Mochulski

Sign in / Sign up

Export Citation Format

Share Document