Biomaterial functionalized graphene oxides with tunable work function for high sensitive organic photodetectors

RSC Advances ◽  
2015 ◽  
Vol 5 (120) ◽  
pp. 99431-99438 ◽  
Author(s):  
Zhimei Hu ◽  
Chi Li ◽  
Riming Nie ◽  
Yan-Qing Li ◽  
Jian-Xin Tang ◽  
...  

Amino acid functionalized graphene acts as an ideal material for transparent conductive electrodes in optoelectronic devices attributed to its tunable work function, excellent electrical conductivity and optical transparency.

2015 ◽  
Vol E98.C (2) ◽  
pp. 127-128 ◽  
Author(s):  
Asami OHTAKE ◽  
Seiko UCHINO ◽  
Kunio AKEDO ◽  
Masanao ERA ◽  
Koichi SAKAGUCHI

2001 ◽  
Vol 666 ◽  
Author(s):  
Kazushige Ueda ◽  
Shin-ichiro Inoue ◽  
Sakyo Hirose ◽  
Hiroshi Kawazoe ◽  
Hideo Hosono

ABSTRACTMaterials design for transparent p-type conducting oxides was extended to oxysulfide system. LaCuOS was selected as a candidate for a transparent p-type semiconductor. It was found that the electrical conductivity of LaCuOS was p-type and controllable from semiconducting to semi-metallic states by substituting Sr2+ for La3+. LaCuOS films showed high transparency in the visible region, and the bandgap estimated was approximately 3.1 eV. Moreover, it was revealed that LaCuOS showed sharp excitonic absorption and emission at the bandgap edge, which is advantageous for optical applications. A layered oxysulfide, LaCuOS, was proposed to be a promising material for optoelectronic devices.


2021 ◽  
Vol 1150 ◽  
pp. 338228
Author(s):  
P. Arul ◽  
Sheng-Tung Huang ◽  
N.S.K. Gowthaman ◽  
G. Mani ◽  
Nithiya Jeromiyas ◽  
...  

2017 ◽  
Vol 31 (6) ◽  
pp. 837-861 ◽  
Author(s):  
Jin-Hae Chang

Polyimide (PI) nanocomposites containing two different functionalized graphene sheets (FGSs) were synthesized, and their thermal properties, morphology, oxygen permeability, and electrical conductivity were compared. Hexadecylamine–graphene sheets and 4-amino- N-hexadecylbenzamide–graphene sheets were utilized. Hybrid films were obtained from blended solutions of PI and FGSs, with the filler content with respect to the PI varying from 0 wt% to 10 wt%. The differences in the properties of the PI matrix were then analyzed with respect to filler content. Transmission electron microscopy analysis confirmed that the two FGSs were dispersed homogeneously throughout the polymer matrix, although some FGS aggregates were also formed. Furthermore, it was observed that the addition of small amounts of FGS nanofiller was sufficient to improve the coefficient of thermal expansion, the gas barrier properties, and the electrical conductivity of the hybrid films. In contrast, the glass transition temperature and the initial decomposition temperature of the PI hybrid films continued to decrease with increasing FGS content.


Micromachines ◽  
2018 ◽  
Vol 9 (7) ◽  
pp. 350 ◽  
Author(s):  
Dong Shin ◽  
Suk-Ho Choi

Graphene transparent conductive electrodes are highly attractive for photodetector (PD) applications due to their excellent electrical and optical properties. The emergence of graphene/semiconductor hybrid heterostructures provides a platform useful for fabricating high-performance optoelectronic devices, thereby overcoming the inherent limitations of graphene. Here, we review the studies of PDs based on graphene/semiconductor hybrid heterostructures, including device physics/design, performance, and process technologies for the optimization of PDs. In the last section, existing technologies and future challenges for PD applications of graphene/semiconductor hybrid heterostructures are discussed.


Transparent conducting electrodes (TCEs) play a vital role for the fabrication of solar cells and pivoted almost 50% of the total cost. Recently several materials have been identified as TCEs in solar cell applications. Still, indium tin oxide (ITO) based TCEs have dominated the market due to their outstanding optical transparency and electrical conductivity. However, inadequate availability of indium has increased the price of ITO based TCEs, which attracts the researchers to find alternative materials to make solar technology economical. In this regard, various kinds of conducting materials are available and synthesized worldwide with high electrical conductivity and optical transparency in order to find alternative to ITO based electrodes. Especially, new generation nanomaterials have opened a new window for the fabrication of cost effective TCEs. Carbon nanomaterials such as graphene, carbon nanotubes (CNTs), metal nanowires (MNWs) and metal mesh (MMs) based electrodes especially attracted the scientific community for fabrication of low cost photovoltaic devices. In addition to it, various conducting polymers such as poly (3, 4-ethylene dioxythiophene): poly (styrenesulfonate) (PEDOT:PSS) based TCEs have also showed their candidacy as an alternative to ITO based TCEs. Thus, the present chapter gives an overview on materials available for the TCEs and their possible use in the field of solar cell technology


Sign in / Sign up

Export Citation Format

Share Document