Lead-free BaTiO3–Bi(Zn2/3Nb1/3)O3 weakly coupled relaxor ferroelectric materials for energy storage

RSC Advances ◽  
2016 ◽  
Vol 6 (17) ◽  
pp. 14273-14282 ◽  
Author(s):  
Longwen Wu ◽  
Xiaohui Wang ◽  
Longtu Li

High energy density BaTiO3–Bi(Zn2/3Nb1/3)O3 materials with concurrently high energy efficiency.

2018 ◽  
Vol 6 (38) ◽  
pp. 10211-10217 ◽  
Author(s):  
Ningtao Liu ◽  
Ruihong Liang ◽  
Zhiyong Zhou ◽  
Xianlin Dong

The strategy of constructing weakly coupled polar structures is feasible and effective to boost the energy density and efficiency for bismuth ferrite-based bulk ceramics.


RSC Advances ◽  
2017 ◽  
Vol 7 (68) ◽  
pp. 43327-43333 ◽  
Author(s):  
Bi Li ◽  
Qiu-Xiang Liu ◽  
Xin-Gui Tang ◽  
Tian-Fu Zhang ◽  
Yan-Ping Jiang ◽  
...  

The recoverable energy density and energy efficiency of the high energy density electrification PLZT2/95/5 ceramic capacitors as a function of the temperature and electric field.


2020 ◽  
Vol 8 (42) ◽  
pp. 14910-14918
Author(s):  
Pingan Yang ◽  
Lili Li ◽  
Hongbin Yuan ◽  
Fei Wen ◽  
Peng Zheng ◽  
...  

A new lead-free antiferroelectric ceramic NBT–SBT was introduced into PVDF polymer to fabricate composites films, achieving record-high energy density of 15.3 J cm−3 at 500 MV m−1 and meeting the requirement of miniaturization and lightweight device.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5742
Author(s):  
Vignaswaran Veerapandiyan ◽  
Federica Benes ◽  
Theresa Gindel ◽  
Marco Deluca

Electrical energy storage systems (EESSs) with high energy density and power density are essential for the effective miniaturization of future electronic devices. Among different EESSs available in the market, dielectric capacitors relying on swift electronic and ionic polarization-based mechanisms to store and deliver energy already demonstrate high power densities. However, different intrinsic and extrinsic contributions to energy dissipations prevent ceramic-based dielectric capacitors from reaching high recoverable energy density levels. Interestingly, relaxor ferroelectric-based dielectric capacitors, because of their low remnant polarization, show relatively high energy density and thus display great potential for applications requiring high energy density properties. In this study, some of the main strategies to improve the energy density properties of perovskite lead-free relaxor systems are reviewed, including (i) chemical modification at different crystallographic sites, (ii) chemical additives that do not target lattice sites, and (iii) novel processing approaches dedicated to bulk ceramics, thick and thin films, respectively. Recent advancements are summarized concerning the search for relaxor materials with superior energy density properties and the appropriate choice of both composition and processing routes to match various applications’ needs. Finally, future trends in computationally-aided materials design are presented.


2018 ◽  
Vol 08 (06) ◽  
pp. 1850040 ◽  
Author(s):  
Xuefan Zhou ◽  
Lu Wang ◽  
Guoliang Xue ◽  
Kechao Zhou ◽  
Hang Luo ◽  
...  

The high-performance energy-storage dielectric capacitors are increasingly important due to their wide applications in high power electronics. Here, we fabricated a novel P(VDF-HFP)-based capacitor with surface-modified NBT-[Formula: see text]ST ([Formula: see text], 0.10, 0.26) whiskers, denoted as Dop@NBT-[Formula: see text]ST/P(VDF-HFP). The influences of ST content, fillers’ volume fraction and electric field on the dielectric properties and energy-storage performance of the composites were investigated systematically. The results show that the dielectric constant monotonously increased with the increase of ST content and fillers’ volume fraction. The composite containing 10.0 vol% NBT-0.26ST whiskers possessed a dielectric constant of 39 at 1[Formula: see text]kHz, which was 5.6 times higher than that of pure P(VDF-HFP). It was noticed that the D-E loops of the composites became thinner and thinner with the increase of ST content. Due to the reduced remnant polarization, the composite with 5.0 vol% NBT-0.26ST whiskers achieved a high energy density of 6.18[Formula: see text]J/cm3 and energy efficiency of approximately 57% at a relatively low electric field of 200[Formula: see text]kV/mm. This work indicated that NBT-0.26ST whisker is a kind of potential ceramic filler in fabricating the dielectric capacitor with high discharged energy density and energy efficiency.


2019 ◽  
Vol 7 (29) ◽  
pp. 17581-17593 ◽  
Author(s):  
Zhiqian Cao ◽  
Haibo Hu ◽  
Mingzai Wu ◽  
Kun Tang ◽  
Tongtong Jiang

Planar all-solid-state rechargeable Zn–air batteries with superior energy efficiency demonstrate a novel design for compact all-solid-state rechargeable ZABs towards next-generation wearable energy storage devices with high energy density and safety.


2020 ◽  
Vol 8 (26) ◽  
pp. 8962-8970 ◽  
Author(s):  
Abdullah Jan ◽  
Hanxing Liu ◽  
Hua Hao ◽  
Zhonghua Yao ◽  
Minghe Cao ◽  
...  

Relaxor-ferroelectric ceramics capacitors have been in the front line of investigations aimed at optimizing energy density due to their high Pmax, suppressed Pr, and high BDS levels, attributed to their highly dynamic polar nano-regions.


2021 ◽  
Vol 10 (6) ◽  
pp. 1153-1193
Author(s):  
Peiyao Zhao ◽  
Ziming Cai ◽  
Longwen Wu ◽  
Chaoqiong Zhu ◽  
Longtu Li ◽  
...  

AbstractThe growing demand for high-power-density electric and electronic systems has encouraged the development of energy-storage capacitors with attributes such as high energy density, high capacitance density, high voltage and frequency, low weight, high-temperature operability, and environmental friendliness. Compared with their electrolytic and film counterparts, energy-storage multilayer ceramic capacitors (MLCCs) stand out for their extremely low equivalent series resistance and equivalent series inductance, high current handling capability, and high-temperature stability. These characteristics are important for applications including fast-switching third-generation wide-bandgap semiconductors in electric vehicles, 5G base stations, clean energy generation, and smart grids. There have been numerous reports on state-of-the-art MLCC energy-storage solutions. However, lead-free capacitors generally have a low-energy density, and high-energy density capacitors frequently contain lead, which is a key issue that hinders their broad application. In this review, we present perspectives and challenges for lead-free energy-storage MLCCs. Initially, the energy-storage mechanism and device characterization are introduced; then, dielectric ceramics for energy-storage applications with aspects of composition and structural optimization are summarized. Progress on state-of-the-art energy-storage MLCCs is discussed after elaboration of the fabrication process and structural design of the electrode. Emerging applications of energy-storage MLCCs are then discussed in terms of advanced pulsed power sources and high-density power converters from a theoretical and technological point of view. Finally, the challenges and future prospects for industrialization of lab-scale lead-free energy-storage MLCCs are discussed.


2021 ◽  
Author(s):  
Hao Yan ◽  
Baijie Song ◽  
Kun Zhu ◽  
Liuxue Xu ◽  
Bo Shen ◽  
...  

Abstract In this work, lead-free (1-x)(Bi0.5Na0.5)0.94Ba0.06TiO3-xBi(Mg0.5Ti0.5)O3 (abbreviated as BNBT-xBMT, x = 0.3, 0.4, 0.5 and 0.6) thin films were prepared on Pt/Ti/SiO2/Si substrates using sol-gel method. The microstructures, dielectric and energy storage properties were investigated. The results showed that the addition of BMT disrupted the long-range ferroelectric order and enhanced the relaxor behavior of BNBT-xBMT thin films. In addition, the leakage current density of thin films was also reduced by the doping of moderate amount of BMT. A high recoverable energy density of 34.36 J/cm3 with an efficiency of 56.63% was achieved in the BNBT-0.5BMT thin film under the electric field of 2149 kV/cm. Furthermore, BNBT-0.5BMT thin film exhibited superior stability in the temperature range of 30°C − 145°C and frequency range of 500 Hz − 5 kHz, as well as long-term fatigue durability after 1 × 105 cycles. These results suggest that BNBT-0.5BMT thin film may be a promising material for lead-free dielectric energy storage applications.


Sign in / Sign up

Export Citation Format

Share Document