Effect of nano structures on the nucleus wetting modes during water vapour condensation: from individual groove to nano-array surface

RSC Advances ◽  
2016 ◽  
Vol 6 (10) ◽  
pp. 7923-7932 ◽  
Author(s):  
W. Xu ◽  
Z. Lan ◽  
B. L. Peng ◽  
R. F. Wen ◽  
X. H. Ma

The geometrical structures of surfaces are important to the formation and growth of nuclei during water vapour condensation. Nucleus wetting modes on grooved surfaces are determined by the intrinsic contact angle and the cross sectional angle.

SPE Journal ◽  
2013 ◽  
Vol 19 (01) ◽  
pp. 88-100 ◽  
Author(s):  
Y.. Zhou ◽  
J.O.. O. Helland ◽  
D.G.. G. Hatzignatiou

Summary We simulate transient behavior of viscous- and capillary-dominated water invasion at mixed-wet conditions directly in scanning-electron-microscope (SEM) images of Bentheim sandstone by treating the pore spaces as cross sections of straight tubes. Initial conditions are established by drainage and wettability alteration. Constant rate or differential pressure is imposed along the tube bundle. The phase pressures vary with positions along the tube length but remain unique in each cross section, consistent with 1D core-scale models. This leads to a nonlinear system of equations that are solved for the interface positions as a function of time. The cross-sectional fluid configurations are computed accurately at any capillary pressure and wetting condition by a semianalytical model that is based on free-energy minimization. The fluid conductances are estimated by newly derived explicit expressions that are shown to be in agreement with numerical computations performed directly on the cross-sectional fluid configurations. An SEM image of Bentheim sandstone is taken as input to the developed model for simulating the evolution of saturation profiles during waterfloods for different flow rates and several mixed-wet conditions, which are established with various initial water saturations and contact angles. It is demonstrated that the simulated saturation profiles depend strongly on initial water saturation at mixed-wet conditions. The saturation profiles exhibit increasingly gradual behavior in time as the contact angle, defined on the oil-wet solid surfaces, increases or the initial water saturation decreases. Front menisci associated with positive capillary pressures promote oil displacement by water, whereas for large and negative capillary pressures at small flow rates, oil displaces water because the associated front menisci retract. This results in the development of pronounced gradual saturation fronts at mixed-wet conditions. The waterfloods simulated at conditions established with a large initial water saturation and small contact angle on the oil-wet solid surfaces exhibit sharp Buckley-Leverett saturation profiles for high flow rates because the capillary pressure is small and less important. The shape of the saturation profiles is interpreted on the basis of the simulated capillary pressure curves and the corresponding fluid configurations occurring in the rock image.


Author(s):  
J.-F. Revol ◽  
Y. Van Daele ◽  
F. Gaill

The only form of cellulose which could unequivocally be ascribed to the animal kingdom is the tunicin that occurs in the tests of the tunicates. Recently, high-resolution solid-state l3C NMR revealed that tunicin belongs to the Iβ form of cellulose as opposed to the Iα form found in Valonia and bacterial celluloses. The high perfection of the tunicin crystallites led us to study its crosssectional shape and to compare it with the shape of those in Valonia ventricosa (V.v.), the goal being to relate the cross-section of cellulose crystallites with the two allomorphs Iα and Iβ.In the present work the source of tunicin was the test of the ascidian Halocvnthia papillosa (H.p.). Diffraction contrast imaging in the bright field mode was applied on ultrathin sections of the V.v. cell wall and H.p. test with cellulose crystallites perpendicular to the plane of the sections. The electron microscope, a Philips 400T, was operated at 120 kV in a low intensity beam condition.


1960 ◽  
Vol 19 (3) ◽  
pp. 803-809
Author(s):  
D. J. Matthews ◽  
R. A. Merkel ◽  
J. D. Wheat ◽  
R. F. Cox

2018 ◽  
Author(s):  
Sang Hoon Lee ◽  
Jeff Blackwood ◽  
Stacey Stone ◽  
Michael Schmidt ◽  
Mark Williamson ◽  
...  

Abstract The cross-sectional and planar analysis of current generation 3D device structures can be analyzed using a single Focused Ion Beam (FIB) mill. This is achieved using a diagonal milling technique that exposes a multilayer planar surface as well as the cross-section. this provides image data allowing for an efficient method to monitor the fabrication process and find device design errors. This process saves tremendous sample-to-data time, decreasing it from days to hours while still providing precise defect and structure data.


Sign in / Sign up

Export Citation Format

Share Document