Design of chiral Co(ii)-MOFs and their application in environmental remediation and waste water treatment

RSC Advances ◽  
2016 ◽  
Vol 6 (30) ◽  
pp. 25149-25158 ◽  
Author(s):  
Sudeshna Bhattacharya ◽  
Sukhen Bala ◽  
Raju Mondal

The present work reports construction of Co-MOFs with amide based bispyrazole ligand and different carboxylic acids which have potential applications in CO2 adsorption and photocatalytic waste water treatment.

2021 ◽  
pp. 246-278
Author(s):  
M. Dhiman

The present review highlights the different types of nano ferrites and their surface modified composites as an alternative adsorbent in waste water treatment. In this review, the recent progresses and potential applications of SFNPs/SFNCs for the removal of organic and inorganic contaminants through adsorption routes are critically reviewed. There are number of water purification techniques but the adsorption is one of the simplest, effective and economical method for wastewater purification. Adsorption isotherm models, kinetic models, thermodynamic parameters and adsorption mechanism have also been discussed. The present article lists different type of adsorbents and reviews state-of-the-art of the removal of different pollutants from water. The efforts have been made to discuss the sources of contamination and toxicities of pollutants. The possible techniques of recovery and reuse, toxicity, research gaps and the future perspective of SFNPs are also discussed in brief. Based on this review, it is possible to conclude that SFNPs and their derivative composites have unlimited capacity in addressing array of problems encountered in water and wastewater treatment. The present study highlights the future areas of research for waste water treatment.


2015 ◽  
Vol 3 (2) ◽  
pp. 832-839 ◽  
Author(s):  
Jie Ding ◽  
Baojun Li ◽  
Yushan Liu ◽  
Xiaoshe Yan ◽  
Sha Zeng ◽  
...  

Fe3O4@reduced graphene oxide composite (FGNC) was synthesised, and for rhodamine B (RhB) and As5+ removal, the excellent behavior of FGNC highlights 3 potential applications in waste water treatment.


2017 ◽  
Vol 5 (1) ◽  
pp. 70-77 ◽  
Author(s):  
Xiuqiang Li ◽  
Renxing Lin ◽  
George Ni ◽  
Ning Xu ◽  
Xiaozhen Hu ◽  
...  

Abstract Solar steam generation is emerging as promising solar-energy conversion technology for potential applications in desalination, sterilization and chemical purification. Despite the recent use of photon management and thermal insulation, achieving optimum solar steam efficiency requires simultaneous minimization of radiation, convection and conduction losses without compromising light absorption. Inspired by the natural transpiration process in plants, here we report a 3D artificial transpiration device with all three components of heat loss and angular dependence of light absorption minimized, which enables over 85% solar steam efficiency under one sun without external optical or thermal management. It is also demonstrated that this artificial transpiration device can provide a complementary path for waste-water treatment with a minimal carbon footprint, recycling valuable heavy metals and producing purified water directly from waste water contaminated with heavy metal ions.


Author(s):  
Maria Y. Savostyanova ◽  
◽  
Lidia А. Norina ◽  
Arina V. Nikolaeva ◽  
◽  
...  

Retaining of water resources quality is one of the global ecological problems of the modern time. The most promising direction in solving the problem of water resources protection is the reduction of negative environmental influence of waste water from production facilities by upgrading the existing water treatment technologies. To treat utility water, technical and rain water from site facilities of Transneft system entities, the specialists developed and approved standard technological diagrams, which are used in producing treatment facilities. The standard technological diagrams provide for all necessary stages of waste water treatment ensures the reduction of pollution level to normal values. However, during operation of treatment facilities it was established, that to ensure the required quality of waste water treatment with initially high levels of pollution, the new technological solutions are necessary. The author presents the results of scientific-research work, in the context of which the best affordable technologies were identified in the area of the treatment of waste water with increased content of pollutants and non-uniform ingress pattern. On the basis of the research results the technical solutions were developed for optimization of operation of existing waste water treatment facilities by means of using combined treatment of technical and rain waters and utility waste waters and applying bioreactor with movable bed – biochips. The use of bioreactor with movable bed allows the increase in the area of active surface, which facilitates increase and retention of biomass. Biochips are completely immersed into waste waters, and biofilm is formed on the entire volume of immersion area, facilitating retention of biomass and preventing formation of sediments. Due to mixing the floating device with biofilm constantly moves along the whole area of bioreactor, and, in doing so, speeds up biochemical processes and uniformity of treatment. The advantages of a bioreactor with movable bed – its active sludge durability against increased and changing pollutant concentrations, change of waste water temperature and simplicity of application – ensured the possibility of its use for blending utility waters, technical and rain waters.


2017 ◽  
Vol 9 (1) ◽  
Author(s):  
Taty Hernaningsih

Waste water treatment by industry usually uses chemicals that may lead to additional environmental pollution load. On the other hand, water demand increases and environmental regulations regarding waste water disposal requirements that apply more stringent. It is necessary for waste treatment technique that accommodate this requirement. Electrocoagulation process is a technique of wastewater treatment that has been chosen because the technique is environmentally friendly. This paper will review some of the research or application electrocoagulation process which is conducted on industrial waste water. Types of industrial waste water that is to be reviewed include: industries batik, sarongs, textiles, palm oil, slaughterhouses, food, leather tanning, laundry, pulp and paper. Overview reviewed in this research include the waste water treatment process in several processing variations such as: change in time, electricity and kind of electrodes. The results of the research with electrocoagulation process in the industry are the removal efficiency of TSS, COD, BOD5, Chrome, phosphate, surfactants, color turbidity influenced by several factors including time, strong current, voltage, distance and type of electrode and pH. The results of the study with electrocoagulation process in the industry is the removal efficiency of TSS, COD, BOD5, chromium, phosphate, surfactant, turbidity color that are influenced by several factors including time, strong current, voltage, distance and type of electrode and pH. It is hoped the information presented in this article can be a reference for similar research for the improvement of research on the process ektrokoagulasi.Key words: elektrocoagulation, removal eficiency, environmental friendly


Sign in / Sign up

Export Citation Format

Share Document