Cross-linked methyl cellulose/graphene oxide rate controlling membranes for in vitro and ex vivo permeation studies of diltiazem hydrochloride

RSC Advances ◽  
2016 ◽  
Vol 6 (42) ◽  
pp. 36136-36145 ◽  
Author(s):  
Gunjan Sarkar ◽  
Nayan Ranjan Saha ◽  
Indranil Roy ◽  
Amartya Bhattacharyya ◽  
Arpita Adhikari ◽  
...  

Permeability characteristics of the anti-hypertensive drug, diltiazem hydrochloride, from uncross-linked and cross-linked methylcellulose (MC)/graphene oxide (GO) rate controlling membranes (RCMs) were investigated.

Author(s):  
Harmanpreet Singh ◽  
Pooja Jaiswal ◽  
Suksham Gupta ◽  
Simerjit Singh

  Objective: The current investigation deals with formulation and evaluation of fast disintegrating sublingual tablets of rizatriptan benzoate (RTB) to produce its intended therapeutic effect for acute treatment of migraine. When the drug is given by sublingual route, it overcomes the first pass metabolism and quick entry of drug in systemic circulation is obtained. It would result in fast pharmacological response hence faster relief from migraine which is an important criterion in migraine therapy.Methods: In this study, RTB sublingual tablets were prepared using direct compression process using various bioadhesive polymers such as sodium carboxymethyl cellulose, hydroxyl propyl methyl cellulose-K4M, and chitosan at various concentration ranging 0.5-5% w/w along with sodium starch glycolate (SSG) or cross carmellose sodium (CCS) as super disintegrants at different concentration ranging 2-8% w/w.Results: The tablets disintegrated quickly and dissolution tests conclude that RTB was released from the formulation within the compendial limits. The formulations batches (A8 and B8) containing 2% w/w chitosan along with 2% w/w SSG or CCS which disintegrate rapidly and show high dissolution and ex vivo permeation were selected as optimized formulations.Conclusion: The results obtained from the study showed that the bioavailability problem of the drug has been solved as the drug is given by sublingual route and it directly enters into systemic circulation. Furthermore, the formulation overcomes the problems associated with migraine attack as fast disintegrating technology is used.


Author(s):  
Mohammad Muqtader Ahmed ◽  
Farhat Fatima ◽  
Abdul Bari Mohammed

The objective of the study was to formulate olive oil based organogels for the topical application of fluconazole (FLZ), to ensure the efficient delivery of the drug deeper in to the skin layers. Methods: Nine formulations developed by hot-melt method using olive oil, sorbitan monostearate (SMS) and FLZ. Prepared formulations characterized for macro evaluations, pH, spreadibility, viscosity, gel-sol transition, in-vitro diffusion study. Further optimized formulation evaluated for ex-vivo percutaneous permeation, in-vitro antifungal studies and stability studies by similarity index. Results: The results of evaluated parameters ensure the stability and effectiveness of the prepared olive oil based organogels. In-vitro diffusion studied reflects decrease in drug release with increase in surfactant concentration due to increase in viscosity. Moreover, ex-vivo permeation studies revealed that the permeation of FLZ was enhanced for optimized formulations (F6) as compared to the marketed gel formulation. Further, the optimized formulation exhibits the broad zone of inhibition against fungal strains in comparison to control and marketed product during in-vitro antifungal study. Conclusion: The olive oil based organogels formulation shown the enhanced permeation of FLZ from organogel network structure with good antifungal activity as compared to the marketed formulation. Henceforth, the FLZ organogel formulations could be used topically for the effective treatment of fungal infection.


2021 ◽  
Vol 14 ◽  
Author(s):  
Sarbjot Kaur ◽  
Ujjwal Nautiyal ◽  
Pooja A. Chawla ◽  
Viney Chawla

Background: Background: Olanzapine belongs to a new class of dual spectrum antipsychotic agents. It is known to show promise in managing both the positive and negative symptoms of schizophrenia. Drug delivery systems based on nanostructured lipid carriers (NLC) are expected to provide rapid nose-to-brain transport of this drug and improved distribution into and within the brain. Objective: The present study deals with the preparation and evaluation of olanzapine loaded NLC via the intranasal route for schizophrenia. Methods: Olanzapine-NLC were formulated through the solvent injection method using isopropyl alcohol as the solvent, stearic acid as solid lipid, and oleic acid as liquid lipid, chitosan as a coating agent, and Poloxamer 407 as a surfactant. NLC were characterized for particle size, polydispersity index, entrapment efficiency, pH, viscosity, X-ray diffraction studies, in-vitro mucoadhesion study, in- vitro release and ex-vivo permeation studies. The shape and surface morphology of the prepared NLC was determined through transmission electron microscopy. To detect the interaction of the drug with carriers, compatibility studies were also carried out. Results: Average size and polydispersity index of developed formulation S6 was 227.0±6.3 nm and 0.460 respectively. The encapsulation efficiency of formulation S6 was found to be 87.25 %. The pH, viscosity, in-vitro mucoadhesion study, and in- vitro release of optimized olanzapine loaded NLC were recorded as 5.7 ± 0.05, 78 centipoise, 15±2 min, and 91.96 % respectively. In ex-vivo permeation studies, the percent drug permeated after 210 min was found to be 84.03%. Conclusion: These results reveal potential application of novel olanzapine-NLC in intranasal drug delivery system for treatment of schizophrenia.


Author(s):  
Himabindu Peddapalli ◽  
Vasudha Bakshi ◽  
Narender Boggula

Objective: Olmesartan belongs to a class of angiotensin II receptor blockers. It is used in the treatment of hypertension. However, it undergoes extensive hepatic first-pass metabolism, resulting in low oral bioavailability is about 26%. The aim of this study was to prepare and evaluate the mucoadhesive buccal tablets of olmesartan with a goal to increase the bioavailability and improve the patient compliance.Methods: Mucoadhesive buccal tablets were prepared by a direct compression technique using mucoadhesive polymers such as hydroxypropyl methylcellulose (HPMC K4M), sodium carboxymethylcellulose (SCMC), and Carbopol 934P. The tablets were evaluated for weight variation, thickness, hardness, friability, surface pH, swelling index, drug content uniformity, in vitro drug release, ex vivo mucoadhesive strength, ex vivo mucoadhesive time, and ex vivo permeation studies. The release kinetics was calculated to determine the drug release mechanism. Results: The physicochemical properties of all the formulations were shown to be within the limits. The optimized buccal tablets F2, F7, and F11 showed satisfactory drug release rates with the diffusion controlled mechanism. Optimized buccal tablets developed for olmesartan possess reasonable mucoadhesive strength, mucoadhesive time, and surface pH was in an acceptable salivary pH 6.76±0.28–6.89±0.34. The ex vivo permeation studies for optimized tablets were shown satisfactory drug permeation and could meet the target flux 0.991 mg h−1cm−2.Conclusion: The obtained results could be used as a platform to develop the buccal delivery of this drug, which bypasses the first-pass metabolism and results in the improvement of bioavailability. Hence, the present study concludes that the olmesartan could be delivered through the buccal route.


Author(s):  
Nagaraj Banala ◽  
Himabindu Peddapalli ◽  
Narendar Dudhipala ◽  
Krishna Mohan Chinnala

Duloxetine hydrochloride is a selective serotonin and nor adrenaline reuptake inhibitor. It is used in the treatment of depression, diabetic peripheral neuropathic pain and in moderate to severe stress urinary incontinence in women. However, it undergoes extensive hepatic first-pass metabolism and susceptible to undergo degradation in acidic environment of stomach, which results in the poor bioavailability. The objective of the present study was to develop and evaluate the mucoadhesive buccal tablets (transmucosal delivery) of duloxetine hydrochloride with a goal of to increase the bioavailability and improve the patient compliance. Mucoadhesive buccal tablets were prepared by a wet granulation technique using mucoadhesive polymers like HPMC K4M, Carbopol 934P and PEO WSR 303. The tablets were evaluated for weight variation, thickness, hardness, friability, surface pH, swelling index, drug content uniformity, in vitro drug release, in vitro bioadhesion and ex vivo permeation studies. The physicochemical properties of all the formulations were shown to be within the limits. The optimized buccal tablets AA1, AB3 and AC1 showed prolonged drug release for a period of 6 h with the Higuchi model release profile. Further, ex vivo permeation studies for optimized tablets were conducted and shown enhanced drug permeation. Therefore, these results demonstrated that the optimized buccal formulation of duloxetine hydrochloride enhances the oral bioavailability by delivered through the buccal route. 


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1409
Author(s):  
Haidara Majid ◽  
Andreas Puzik ◽  
Tanja Maier ◽  
Raphaela Merk ◽  
Anke Bartel ◽  
...  

Suitable ex vivo models are required as predictive tools of oromucosal permeability between in vitro characterizations and in vivo studies in order to support the development of novel intraoral formulations. To counter a lack of clinical relevance and observed method heterogenicity, a standardized, controlled and physiologically relevant ex vivo permeation model was established. This model combined the Kerski diffusion cell, process automation, novel assays for tissue integrity and viability, and sensitive LC-MS/MS analysis. The study aimed to assess the effectiveness of the permeation model in the sublingual formulation development of cyclobenzaprine, a promising agent for the treatment of psychological disorders. A 4.68-fold enhancement was achieved through permeation model-led focused formulation development. Here, findings from the preformulation with regard to pH and microenvironment-modulating excipients proved supportive. Moreover, monitoring of drug metabolism during transmucosal permeation was incorporated into the model. In addition, it was feasible to assess the impact of dosage form alterations under stress conditions, with the detection of a 33.85% lower permeation due to salt disproportionation. Integrating the coherent processes of disintegration, dissolution, permeation, and metabolization within a physiological study design, the model enabled successful formulation development for cyclobenzaprine sublingual tablets and targeted development of patient-oriented drugs for the oral cavity.


Author(s):  
Shefrin S ◽  
Sreelaxmi C. S. ◽  
Vishnu Vijayan ◽  
Sreeja C. Nair

Objective: To formulate and characterize midazolam loaded niosomal transdermal patches for overcoming the frequent dosing and lower bioavailability complications associated with conventional therapy. Methods: The loaded niosomal transdermal patches were prepared by thin film hydration method. The preliminary evaluation and characterization studies was conducted to find the optimised formulation. The in vitro release and ex-vivo permeation studies were investigated. The histopathological studies and stability studies were also assessed. Results: The midazolam loaded niosomal transdermal patches of vesicle size and zeta potential 116.1±84.46 d. nm and 8.56±1.2 mV respectively was formulated. The characterizations of both niosome and niosomal transdermal patches were found to be within the acceptable limits. The in vitro drug release showed an initial burst release followed by sustained release for both optimised niosomal formulation N5 and optimised niosomal transdermal patch formulation NT5with a maximum activity at 97.3±0.35% and 98.9±0.20% respectively. The ex vivo permeation studies of niosomal transdermal patch NT5 was performed which showed a higher permeability than control solution with a flux value of 0.151. The histopathological studies of the optimised formulation showed no detectable lesions upon skin surface and irritations. The stability studies showed that patches were stable over 90 d in different atmospheric conditions. Conclusion: The midazolam loaded niosomal transdermal patch was found to be a promising nano drug delivery alternative which showed better entrapment, release with permeation profile for the daily management of epilepsy with decreased dosing frequency.


Sign in / Sign up

Export Citation Format

Share Document